
A Position Reporting System using WSJT Weak Signal Data Modes

Andy Talbot G4JNT July 2015

Updated to include JT9 March 2016

Overview

There are a number of schemes around that use the data from a GPS receiver to report their location

in real time. These all use radio links of some type, examples are the General (amateur) Packet

Radio Network (GPRS) and direct Frequency shift keying, effectively RTTY, sent at 433MHz from

high altitude balloons. In the commercial world, the mobile and satellite phone networks are used

extensively as well as a few dedicated network based systems. I was wondering what could be done

using weak signal modes and strong forward error correction (FEC) to enable automatic position

reporting using low power transmitters and direct reception, ie no repeaters or networking.

The WSJT suite, widely used by amateurs for extreme weak signal communications [1] has a range of

modulation types all geared to sending preformatted messages using a variety of mostly multi-

frequency shift modulation variants. To save reinventing wheels, could WSJT modes be used to

transmit the location information from a GPS receiver?

Message Structures

The majority of GPS receivers and modules generate an NMEA formatted serial data stream using

RS232 type signalling at usually 4800 or 9600 baud. A typical output sentence containing position as

Lat/Long together with time and date with a few other parameters is :

$GPRMC,152914,A,5054.5784,N,00117.4020,W,000.0,000.0,230615,003.5,W*70

Only the Lat/Long information needs to be transmitted as the WSJT receiving software itself uses real

time supplied by the PC it is running on for logging. The precision delivered by the GPS receiver, to an

accuracy of 0.0001 minutes of arc, corresponds to a distance of just 185mm when considered as a

great circle angle. On longitude values it represents an even lower distance – around 100mm at UK

latitudes. While this level of position accuracy is rarely going to ever be needed, it seems a pity just to

throw it away in the interest of message brevity, so how could this Lat/Long information be sent using

one of the WSJT weak signal data modes?

The WSJT modes under consideration are JT65 (A , B or C submodes) which use Reed Solomon

encoding to transmit either a 13 character message or compressed callsign and locator or report

information using one of 65 tones with a symbol rate and therefore noise bandwidth of 2.7Hz.

Another is JT4 (with A – G submodes) which uses convolutional encoding at 4.4Hz symbol rate. The

other WSJT modes, FSK441 and ISCAT weren’t considered here as they are not specifically designed for

error corrected weak signalling. Another contender is WSPR with its 1.5Hz bandwidth, and well-

known capability for extreme weak signal. Unfortunately WSPR uses a rigid message structure which,

ironically does include location information, but only as a four digit locator, such as IO90 with a

resolution of many tens of km. So unfortunately, WSPR had to be put to one side (for now!) But see

the Appendix for ways WSPR can be used for slightly degraded location reporting.

JT65 would be the ideal choice with its 13 character message, strong FEC and narrow symbol

bandwidth. But however much I have studied the mathematics of error correction, I just cannot get to

grips with Reed Solomon encoding. It is NOT SIMPLE; Galois Fields, Finite arithmetic, Polynomials – I

could go on. As the Lat/Long has to be encoded on the fly at the transmitter, a complete encoding

process has to be done for each report. It would prove impossible, or at least would require a lot of

processing power, to use one of the ready-made JT65 tools such as JT65CODE.EXE available from [1].

As I wanted to do the code generation in a small PIC processor JT65 was, therefore, not an option.

The encoding of JT4 consisting of four tone MFSK modulation is, however, relatively straightforward

to understand [2]. I already had PIC code that would take a 13 character message, encode it to JT4

symbols, then send these to one of a variety of frequency synthesizer chips to generate the transmit

waveform in real time. The DL0SHF EME Beacon on 10GHz uses just this code, with an LMX2541

Fractional-N synthesizer to send a time-stamped hash on its JT4G modulation to assist in verification

of reception reports [3]. So, how to compress Lat / Long data into a 13 character message suitable

for JT4 transmission?

Compressing the Lat / Long data

Consider the NMEA sentence

$GPRMC,152914,A,5054.5784,N,00117.4020,W,000.0,000.0,230615,003.5,W*70

This contains high resolution location information in the form DDDMM.MMMM (D = degrees, M =

minutes) followed by N/S or E/W . For latitude only two digits are sent for DD.

Lat = 50° 54.5784’ N Long = 1° 17.4020’ W.

The Degrees can take on values from 0° to 179° (0° to 89° only for latitude). The minutes, ignoring the

decimal point, can take on any of 600000 values from 00.0000’ to 59.9999’. One extra bit of

information is needed in each case for N/S or E/W determination. By convention degrees West or

South are regarded as negative values which are difficult to work with in simple processor arithmetic.

A negative value can be represented by adding on, say, 180 degrees to the DDD value to act as a sign

flag. Or, perhaps a bit neater, the sign bit could be encoded separately.

The total number of values needed to transmit the full longitude as supplied by the GPS receiver is

therefore 180 * 600000 * 2 = 21600000 or 216 million. For the latitude, half this number is

needed: 108M. The large number, X, now completely expresses the Lat/Long in units of 0.0001

minutes of arc. For the example given above:

XLAT = 50° * 600000 + 545784 = 30545784

XLONG = (1° + 180°) * 600000 + 174020 = 108774020

Now, how can these two large numbers be compressed into a maximum of 13 characters?

The WSJT Alphabet consists of 42 characters, made up from letters A-Z, numbers 0 – 9 and the six

punctuation characters symbols [space] + - . / ?

One compression technique using the least number of characters is to map the value of N onto all 42

possible characters by successively dividing N by 42, and using the remainder to represent each

character in turn. Ie. expressing the value MODULO(42) or BASE 42 so any character represents a

value from 0 to 41. ‘0’ = Zero, ‘A’ = 10, ‘Z’ = 35, ‘?’ = 41 etc.

Using the WSJT alphabet “0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ +-./?” to represent values

from 0 to 41, the latitude value, XLAT can be compressed as follows :

30545784 / 42 = 727280 remainder 24 = O (letter O)

727280 / 42 = 17316 remainder 8 = 8

17316 / 42 = 412 remainder 12 = C

412 / 42 = 9 remainder 34 = Y

 Most significant character = 9

So the latitude encodes as 9YC8O. Using the same techniques, Longitude encodes as Y/7BQ and the

whole location information could be encoded into the 10 character string 9YC8OY/7BQ . A compact

solution but certainly not ideal. Spaces and inconvenient punctuation symbols make the result

somewhat unintelligible when trying to read it, and there is the problem of the I/1 and 0/O visual

ambiguity always present in alphanumerical strings. Furthermore, there are three redundant

characters in the WSJT message not used and probably will now be wasted.

So is there a way of encoding the Lat/Long into a neater-looking subset of the alphabet that will still fit

the answer into 13 characters? It is not possible using numbers alone, but using just the letters ‘A’ to

‘Y’ , a value of 216 million can be fitted into 6 characters using arithmetic Base 25:

30545784 / 25 = 1221831 remainder 9 = J

1221831 / 25 = 48873 remainder 6 = G

48873 / 25 = 1954 remainder 23 = X

1954 / 25 = 78 remainder 4 = E

78 / 25 = 3 remainder 3 = D

 MSB 3 = D

The MODULO(25) data for latitude now becomes DDEXGJ. Using six letters for Lat and Long allows a

separator of ‘-‘ to be inserted between the two fields to enhance readability and deliver a final 13

character message.

One minor change allows for a neater treatment of N/S or E/W. Using an offset of 180 degrees to

indicate the sign means the complete text string changes if the direction is swapped. While this

doesn’t affect the result, it would be nicer if the N/S or E/W flipped only one letter in the final data.

Without the 180 offset value, numbers from 0 to 107999999 are generated. The most significant

value MODULO 25 for this only ranges from 0 to 11, (letters ‘A’ to ‘L’) so the values 12 to 23 , or ‘M’

to ‘X’ are still available.

A neater solution to including the sign information is now possible; instead of adding an offset of

180° (X = 108000000) to indicate a negative number, use a value of 12 * 25
5
 = 117187500 . This

results in only the most significant character changing.

So 50° 54.5784’ N encodes as DDEXGJ whereas

 50° 54.5784’ S encodes as PDEXGJ

In the GPS NMEA string the E/W and N/S flag appears as an individual character and it is far simpler to

just read this and change the most significant character appropriately, rather than do the complete

calculation of adding on 180 degrees before encoding.

Using a hyphen as the separator , the complete Lat/Long information for

50° 54.5784’ N 1° 17.4020’ W is now DDEXGJ-MBYNKU

One further advantage of using just letters ‘A’ – ‘Y’ is that ‘Z’ is available to act as a flag for future

expansion. Any occurrence of that letter, or any number, or no hyphen in the middle position means

the data has been encoded in a different way.

Generator and Encoding Hardware

Beacon sources currently generating WSJT modulation already have a GPS receiver and some means

of generating multi-frequency modulation so the hardware for one of these could be used directly.

Figure 1 shows a PCB carrying a low cost Maestro A2200 GPS module and 16F628 PIC controller. The

four pin header on the right hand side carries SPI data directly to a variety of synthesizer or DDS chips.

One of these boards connected to an LMX2541 synthesizer module shown in Figure 2 forms a

complete source, capable of directly generating WSJT modes at any frequency from 35 to 1296MHz.

So with a change of PIC software, it could be persuaded to send compressed Lat/Long information.

The PIC code reads the NMEA data and extracts the Degrees, Minutes and direction flags. The

minutes can be read directly as a five digit number simply by bypassing the decimal point. It then

does the calculation X = Deg * 600000 + Mins using simple 32-bit integer arithmetic for Lat and Long

values The resulting value X is then successively divided by 25, again using simple integer division

routines written in raw assembler. The remainder after each stage of division is converted to a letter

in the range ‘A’ to ‘Y’ and placed in the appropriate place for source encoding. The direction flags are

read and the MS Character altered appropriately. The thirteen characters are encoded into the 206

JT4 symbols that are stored and sent as frequency setting commands to the synthesizer chip at the

correct rate and start time.

The NMEA string also delivers real time information and a GPS data Status flag. The seconds part of

the UTC time field is needed in order to start the JT4 transmission at the correct interval, at the start

of every minute. The status flag is used to inhibit transmission of location data if the GPS is not

giving a valid fix. In this event, the message is replaced with an identification one and GPS status bit

I have, quite unilaterally, named this format LocBcn

Table 1 Raw Data as delivered by the WSJT Software

 UTC Sync S/N DT DF W

125200 5 -18 0.7 -46 9 * DDCXJC-MBTCAG 1 0 A

125300 1 -21 0.6 -48 7 *

125400 7 -15 0.6 -50 7 * DDCPKF-MBRIIS 1 0 A

125500 5 -17 0.7 -48 9 * DDCFFR-MBQQVD 1 0 A

125600 6 -17 0.6 -53 7 * DDCDCO-MBPVKI 1 0 A

125700 6 -17 0.7 -48 9 * DDCBPH-MBOYSN 1 0 A

125800 6 -16 0.6 -46 24 * DDCIUJ-MBOHEC 1 0 B

125900 1 -22 0.7 -33 9 *

130000 6 -17 0.7 -48 9 * G4JNT LOCBCN. 1 0 A

130100 1 -21 0.6 -42 7 * DDEDIP-MBNMEQ 1 0 B

130200 4 -18 0.7 -44 7 * DDETWS-MBNJFX 1 0 A

130300 7 -16 0.6 -48 24 * DDFLRT-MBNHXK 1 0 A

130400 6 -16 0.7 -53 7 * DDGBMB-MBNAMO 1 0 A

130500 2 -20 0.6 -28 26 *

130600 1 -21 0.7 -42 9 *

130700 4 -19 0.8 -57 7 *

130800 2 -20 0.6 -48 9 * DDIEGP-MBLPQE 1 0 C

130900 3 -20 0.7 -35 7 * DDIQIE-MBLPRC 1 0 C

131000 5 -18 0.6 -26 28 * G4JNT LOCBCN. 1 0 D

131100 3 -19 0.7 -42 9 * DDISAW-MBMNRY 1 0 D

131200 5 -17 0.8 -37 26 * DDITRJ-MBNAVN 1 0 A

131300 0 -23 3.0 -348 7 #

131400 3 -19 0.7 -37 9 *

131500 1 -21 0.6 -39 11 * DDJFWQ-MBOJFR 1 0 D

131600 5 -17 0.7 -33 11 * DDJPGK-MBOSSF 1 0 A

131700 4 -19 0.8 -33 9 * DDJOGN-MBPKWX 1 0 A

131800 4 -19 0.7 -35 9 * DDJPAF-MBQENC 1 0 B

131900 6 -17 0.7 -33 9 * DDJIXQ-MBQJFM 1 0 A

132000 7 -16 0.6 -35 9 * G4JNT LOCBCN. 1 0 A

132100 4 -18 0.7 -31 9 * DDIVBK-MBQTVV 1 0 A

132200 5 -18 0.8 -31 9 * DDIRAS-MBRJAM 1 0 A

132300 4 -18 0.7 -31 9 * DDIMGM-MBRWHP 1 0 A

132400 5 -17 0.8 -28 7 * DDIBHK-MBRYQV 1 0 A
132500 4 -19 0.6 -33 9 * DDHRUD-MBSIVQ 1 0 C

identifier. To comply with licensing requirements, the transmission needs to be identified at “regular

intervals”. As the timing data on the NMEA string is in BCD format, every ten minutes is a convenient

interval to adopt for this. So every time the units of minutes = “0”, instead of sending a 13 character

location code, a message with a callsign and short ident stored in the PIC EEPROM data area is sent

instead.

As a practical test I set the synthesizer to generate JT4D modulation on 144.372MHz and added a five

Watt power amplifier. This was installed in the car to a ¼ wave whip on the roof. The base station

was a crossed-dipole in the loft (yes, I know, cross-polar , but ...) feeding an IC746 on receive. Its

audio was fed into a PC running the WSJT10 software. Then I went for a 50 mile round trip

deliberately, circuiting the base of Butser Hill in Hampshire to give some weak signal shadowing. The

listing in Table 1 shows the

contents of the WSJT screen

while receiving the

transmission.

Note that the strong FEC

applied means that any

messages that are too weak to

decode just give blanks rather

than false values. A very

important point where

recovered data must be

correct; better to have

nothing at all than to have

incorrect location information.

The station identification

appears every 10 minutes,

these messages have a full-

stop at the end. Occasionally

the ident can be seen

appearing out of sequence

with a ‘?’ at the end. This is

where the transmitter has

read from the NMEA data that

the GPS data is invalid –

perhaps due to GPS signal blockage or interference / jamming. The ident is then transmitted in place

of the compressed Lat/Long message, with the final character changed to show the status.

Decoding the Messages

The arithmetic to convert from the 12 characters in the compressed string back to Lat/Long is a

reversal of the encoding process and is trivial in a high level programming language or a spreadsheet.

Characters are taken in turn, converted to a number in the range 0 – 24 and progressively added and

multiplied by 25 to get the two numbers XLAT and XLONG (remembering to correct the first one in each

case for the N/S or E/W direction indicator flag). However, the process is tedious to do manually,

even if using copy-and-paste into a spreadsheet. My SiteCalcWin locator conversion software [4]

has been modified to recognise the 13 character LocBcn string in its input window and this will

immediately convert to Lat/Long, IARU Locator and NGR, but still requires a manual copy and paste

operation

So how can the decoding process be automated? While it is running the WSJT software generates

two text files in its working directory. One ‘ALL.TXT’ contains everything it has ever decoded or

received, (or at lest everything since the file was cleared, using the menu item). For post processing

this is useful as a convenient place to download all the received messages rather than copying them

from the user screen (highlight, then [ctl]-C to copy). But they still need to be converted.

A utility called ReadLocBcn.exe will scan ALL.TXT and automatically recognise a properly formatted

string in the correct place with its hyphen in the middle. This is then extracted and decoded. The

resulting Lat/Long shown on screen is also converted to National Grid Reference [5] so the results can

easily be seen on an OS map. This allowed a check of the software’s operation. The output from

the software with the results from the test drive can be seen in Table 2.

Another file generated by the WSJT software while running allows decoding of real time data as it

arrives. Every new WSJT message that is decoded is stored in a small one line text file ‘DECODED.TXT’

By monitoring this at regular intervals, every new message can be intercepted as soon at it appears.

There can be problems in computer operating systems with two separate software packages trying to

access the same file, but provided this is recognised and coped-with properly, it is permitted. The

Table 2 Decoded LocBcn message showing Lat/Long and calculated NGR [5]

UTC Message Lat Long NGR S/N Freq

1252 DDCXJC-MBTCAG +50.85767 -1.14793 SU59970687 -18.0dB -46Hz 1252

1254 DDCPKF-MBRIIS +50.84938 -1.10245 SU63180599 -15.0dB -50Hz 1254

1255 DDCFFR-MBQQVD +50.83878 -1.08526 SU64400482 -17.0dB -48Hz 1255

1256 DDCDCO-MBPVKI +50.83657 -1.06397 SU65900459 -17.0dB -53Hz 1256

1257 DDCBPH-MBOYSN +50.83501 -1.04140 SU67500444 -17.0dB -48Hz 1257

1258 DDCIUJ-MBOHEC +50.84251 -1.02309 SU68770529 -16.0dB -46Hz 1258

1301 DDEDIP-MBNMEQ +50.88890 -1.00228 SU70171047 -21.0dB -42Hz 1301

1302 DDETWS-MBNJFX +50.90615 -0.99921 SU70361239 -18.0dB -44Hz 1302

1303 DDFLRT-MBNHXK +50.92366 -0.99785 SU70431434 -16.0dB -48Hz 1303

1304 DDGBMB-MBNAMO +50.93904 -0.99011 SU70951606 -16.0dB -53Hz 1304

1308 DDIEGP-MBLPQE +50.99403 -0.95380 SU73412221 -20.0dB -48Hz 1308

1309 DDIQIE-MBLPRC +51.00659 -0.95384 SU73392360 -20.0dB -35Hz 1309

1311 DDISAW-MBMNRY +51.00837 -0.97783 SU71702378 -19.0dB -42Hz 1311

1312 DDITRJ-MBNAVN +51.01010 -0.99048 SU70812396 -17.0dB -37Hz 1312

1315 DDJFWQ-MBOJFR +51.02178 -1.02524 SU68362522 -21.0dB -39Hz 1315

1316 DDJPGK-MBOSSF +51.03152 -1.03513 SU67652630 -17.0dB -33Hz 1316

1317 DDJOGN-MBPKWX +51.03048 -1.05304 SU66402617 -19.0dB -33Hz 1317

1318 DDJPAF-MBQENC +51.03126 -1.07242 SU65042624 -19.0dB -35Hz 1318

1319 DDJIXQ-MBQJFM +51.02494 -1.07731 SU64702553 -17.0dB -33Hz 1319

1321 DDIVBK-MBQTVV +51.01152 -1.08841 SU63942403 -18.0dB -31Hz 1321

1322 DDIRAS-MBRJAM +51.00732 -1.10315 SU62922355 -18.0dB -31Hz 1322

1323 DDIMGM-MBRWHP +51.00235 -1.11698 SU61952298 -18.0dB -31Hz 1323

1324 DDIBHK-MBRYQV +50.99093 -1.11945 SU61792171 -17.0dB -28Hz 1324

1325 DDHRUD-MBSIVQ +50.98209 -1.12903 SU61132072 -19.0dB -33Hz 1325
1326 DDHOKM-MBSPVL +50.97856 -1.13631 SU60632032 -17.0dB -28Hz 1326

programming language I use for this - Power Basic Command Line Complier, PBCC - has specific tags

that are used when opening a file for shared access: (OPEN “DECODED.TXT” FOR INPUT LOCK

SHARED AS #1) It effectively takes control of the file, but allows other software like WSJT to

subsequently modify it while running.

The software RealTimeRead.exe , scans all incoming messages and prints Lat/Long and NGR to screen

as they arrive. The output from this is identical in format to that shown in Table 2.

Both utilities including PBCC source code as well as PIC code for driving an LMX2541 synthesizer can

be found at [6]

Displaying the Result in Google Earth

The Google Earth software [7] can be used with custom overlays to allow many types of user features

to appear on the plot. A path defined in Long/Lat pairs can be drawn, showing the position of each

decoded report and the (direct) track between them.

To be able to plot the location and path on a Google Earth display, the necessary data is first written

to a KML (Keyhole Markup Language) file which Google Earth reads as an overlay onto its display.

KML files share certain similarities with HTL files, but complete details are beyond the scope of this

document. They are well documented on the web, and a search will throw up everything needed.

However, to turn Long/Lat pairs into a plotted line is actually quite straightforward. Most of the KML

file contents are standard header information and all that is necessary is to insert list of coordinates

between specified markers. The format of the coordinates is important, however. They have to

appear as Long,Lat (not in the order Lat / Long more-often quoted), and in decimal degrees with no

spaces. Eg.

 -1.16948,+50.86348

 -1.14793,+50.85767

 -1.10245,+50.84938

 -1.08526,+50.83878 An example .KML file appears in [6]

To generate the plot, the .KML file is then Opened Using Google Earth. If Google Earth is properly

installed on your PC, this file type will be associated with the software and it should open

automatically when the .KML file is double-clicked.

The Utility GenKML.EXE with its .BAS source code can be found in [6]. This software combines the

capture facilities of the two utilities described, taking in either real time decodes via DECODED.TXT or

scan the entire contents of ALL.TXT. In each case, every valid position is written to a .KML file in the

correct format. An automatically generated file name consisting of date and time is offered as a

default, or any other name can be chosen for the .KML file. In real time capture mode, the

programme is terminated by pressing the [esc] key.

Figure 3 shows a typical plot using a .KML overlay generated with the GenKML software using data

transmitted on 144MHz from a local drive-around.

JT9 Modulation , WSJT-X and UDP messages

A recent addition to the WSJT Suite is JT9, a nine tone, narrow spaced (1.73Hz) mode intended for LF

through HF operation that is only available in the new WSJT-X package. The source coding and the

first stage of the convolutional encoding structure for JT9 is identical to that of JT4, so the same

compression techniques can be used for LOCBCN encoding. The occupied bandwidth of JT9 is

around 15.6Hz, similar to that of the narrowest JT4A, but its signal bandwidth is lower at 1.73Hz

instead of the 4.4Hz of JT4. Therefore, JT9 should offer an improvement of 4dB in weak signal

performance.

PIC code has been written to control an AD9850 or AD9851 DDS to transmit location information. This

is included within [6].

The WSJT-X suite requires a different method of accessing the decoded data. This new package

broadcasts its decodes and status as UDP messages designed for intercept by any other software

running on the same machine, or over a network. This considerably simplifies the techniques needed

to extract the decodes, removing the need to work with files open from two pieces of software

simultaneously. The LOCBCN software to intercept UDP messages is included within [6] and is

transparent to whether JT4 or JT9 modulation is in use.

Conclusions and What Next?

We’ve seen how the strong error correction and decoding in an existing weak signal data mode can be

used to send high resolution positioning information from a GPS receiver. Existing beacon generator

hardware can be used unmodified apart from a change to the PIC firmware. Decoding of the

messages is possible in real time with presentation of the results in an easily read form. Inserting the

coordinates into a .KML file allows the track to be shown on a Google Earth plot

Other modulations included within the WSJT suite are also useable. If the Reed Solomon FEC of JT65

could be cracked, there is another perhaps 3dB of weak signal performance. FSK441 and ISCAT could

be used for strong signal uses, like high altitude balloons, but the lack of FEC would necessitate some

very reliable validation routines to be included within the decoder. Perhaps a better encoding scheme

could be used here, with customised source error correction.

WSPR offers some possibilities with its still weaker signal performance. Appendix A suggests some

ways Lat/Long information could be encoded onto a WSPR message.

JT4 has a variety of submodes – different tone shifts – that make it suitable for use on all bands from

LF to SHF. JT4D was chosen for 144MHz as, with its 35Hz tone spacing, it could cope with Doppler

shift from driving at 70mph towards or away from the receiver (70mph ~ 30m/s, or 14Hz shift). But at

LF to HF, with a slower moving transmitter, JT4A with its 4.4Hz tone spacing would be ideal.

References

[1] WSJT Software and documentation http://physics.princeton.edu/pulsar/K1JT/

[2] JT4 Coding process http://www.g4jnt.com/Coding/JT4_Coding_Process.pdf

[3] DL0SHF Beacon http://www.g4jnt.com/DownLoad/BeaconSource_Draft.pdf

[4] SiteCalcWin locator conversion and distance / bearing calculation. Now includes LocBcn

format strings http://www.g4jnt.com/SitecalcWin.zip

[5] NGR Conversion

 In the days before GPS, conversion of Lat/Long to NGR was reasonably

straightforward so long as the OSGB-36 spheroid, specific to the UK, was used for

positioning. GPS, however, universally uses the world-wide WGS-84 spheroid which

is slightly different to OSGB-36. If the values from that are converted to NGR using

the same equations as for OSGB-36, errors in the conversion can be as high as 100 –

200 metres.

 This simplistic solution is used in SitecalcWin and the two LocBcn display utilities, so

be aware that although Lat/Long will be accurate; NGR will be out. This error is

conversion is visible if you plot the NGRs shown in Table 2 on a 1:50000 OS map.

The entire journey was made on main roads – mainly the M27, A3(M), A272 and

A32 loop - but the plotted NGRs are clearly off to one side or other of the road.

There is a conversion for WGS-84 to NGR, but it is very much more complicated than

before, and I have not pursued it. Others have.

[6] All software and hardware details http://www.g4jnt.com/LocBcn.zip

[7] Google Earth software https://www.google.co.uk/intl/en_uk/earth/

Figure 1 Maestro GPS module and PIC microcontroller. The header on the right hand side sends

SPI programming data to one of many types of synthesizer chip

Figure 2 LMX2541 Fractional-N Synthesizer. This

will generate multi-frequency MFSK data modes

directly when driven from the controller shown in

Figure 1

Figure 1 Resulting Plot using a .KML file generated automatically from decoded Long/Lat data

Appendix - Using WSPR instead.

The WSPR protocol is just asking to be pressed into service with the further weak signal advantage

this mode allows. The modulation is very similar to JT4 with its convolutional encoding but the

message structure is very different and customised. The WSPR message carries a compressed

callsign, a four digit locator and a power level in a burst lasting a little under two minutes. The Tx

power level is a value from 0 to 60dBm but unfortunately only 20 of the possible values are permitted;

illegal ones flag as an error. The locator already specifies Lat / Long to a 1° x 2° ‘squaroid’ so all that

remains is to, somehow, encode the higher resolution residual into the callsign and power fields in

such as way that the WSPR decoding software will see them as valid data and not flag as an error. This

is not going to be easy!

The minutes of latitude, and residual 1 degree plus the minutes of longitude generate numbers that

range to 600000 and 1200000 respectively. The callsign field of WSPR is custom-coded as follows :

 A maximum of six characters consisting only of A-Z, 0-9 and [space] are allowed. The third character

is forced to be always a number. To cope with callsigns that start with a letter followed by a number,

a space is appended to the front if necessary. So, for example, ‘G4JNT’ will become ‘[sp]G4JNT’

whereas GD4JNT stays as-is. Short callsigns are then further padded out to six characters by

appending spaces to the end. The 37 allowed characters are allocated values from 0 to 36 such that

‘0’ – ‘9’ give 0 – 9, ‘A’ to ‘Z’ give 10 to 35 and [space] is given the value 36. Further coding rules on

callsigns mean that the final three characters (of the now padded out callsign) can only be letters or

[sp] so can only take the values 10 – 36.

With all those characters taking on values from 0 to 36, the callsign is now compressed into a single

integer N by successively building up for an absolute maximum value for N of 37 * 36 * 10 * 27 * 27 *

27 = 262177560. (The complex compression was adopted since the resulting number now fits very

efficiently into 28 bits) . The value is sufficient to hold one of the Lat/Long residuals, but not both

of them. Even multiplying by 20 to include all possible values of the power level field is not possible

The absolute maximum value that could be included within a WSPR message is therefore only

5243551200. This is approximately 2 * 51000
2
 and now dictates the maximum Lat / Long resolution

that can be compressed into something that can be sent as a WSPR message.

The latitude residual contains 60.0000 minutes (the longitude is twice this) so if a resolution of just

0.0012 minutes were adopted (about 2 metre positioning accuracy) to give a number in the range 0 to

50000 (0 to 100000 for longitude) the result could be squeezed into the WSPR callsign and power

level fields. The arithmetic is horribly messy and inelegant, but is still just multiplication and division.

A project left still to do...

Pictures

Photo 1 A2200_Module.JPG

Photo 2 IMGP9366.JPG

Photo 3 LocBcnTestRun3.jpg

