
Serial Control for the VertiCom MTS1500 Synthesizer

Andy Talbot G4JNT July 2009

A little while ago I bought a VertiCom MTS 1500-151-01 12GHz Synthesizer module from Dave

Robinson, G4FRE/WW2R. Dave supplied a write up and had already worked out the programming

codes needed to be sent as a serial word to the module to set it onto any frequency within its

operating range. All details are available from [1] and will not be repeated here.

Dave already supplied PIC code for blowing into a 12F629 to set the unit onto either of two

frequencies [2] – but to change these necessitated getting into the PIC assembly listing and hard

coding several register values. I wanted to be able to update the values on-the-fly with a simple

RS232 connection using ASCII commands from Hyperterminal.

Having just written some PIC code to control the LMX23x6 synthesizer in the Bridgewave

Synthesizer module [3] this was a good starting point. Fortunately Dave’s PIC / module interface

used the same PIC device, and almost the same pin connections (just two swapped) as mine, so I

decided to make the VertiCom interface fully compatible with his existing PIC module, so the only

changes needed would be addition of the RS232 interface (a resistor and three wires to a 9 way D

connector) and, of course, reprogramming with the new firmware.

The RS232 interface is arranged to share the same pins on the 12F629 as those used for clock and

data from the device programmer, and a convenient way to manage both in-circuit programming and

RS232 control is to install a four way header as shown in Figure 1 (see Verticom.gif for a higher

quality version) A resistor is needed in the RS232 interface to limit the negaive current

(unfortunately this resistor can’t be mounted on the PCB as it prevents the PIC programmer form

working). The same serial interface is used for my Bridgewave controller [3], LMX1500 Synth

module [4] and [5] and programmable Beacon Keyer [6].

Figure 1 Interfacing the PIC

Updating and interfacing the PIC controller

1) Download MTS15CTL.ZIP from [7] , extract the PIC firmware MTS15CTL.HEX and

(re)programme the 12F629. The .ASM source code is included for reference.

2) Make up an interface lead with a 9 Way D Female connector and 4k7 resistor as shown in

Figure 1, and connect to your computer’s COM port.

3) Run Hyperterminal, with the parameters set to 1200 Baud, 8 Bit data, No parity, 2 stop bits

and no handshaking. 1200 N81

The Synthesizer is controlled with ASCII commands. All commands must be terminated with a

Carriage Return , shown here as [cr]

In the exmples shown below, data you type is shown underlined such as N12345[cr] , and

responses from the controller shown in italic N – 12345

Do not put any extraneous spaces into commands – in the examples below a space is shown before

the [cr] purely for clarity. If a command has the wrong syntax, no response will be received from the

controller. Upper or lower case letters are accepted.

Connect the interface and turn on the synthesizer. A

display similar to this should appear and shows the

values stored in non-volatile memory with a brief

description of the command protocol to change them.

Each of the five registers R, P, S, C and G can be set

individually. The data is entered as hexadecimal

ASCII values with either two, three or four hex digits

following the register name. A modified version of

Dave’s spreadsheet for generating the values,

MTS1500_JNT.xls included within this archive gives

the hex data needed.

The values are entered one at a time but are not

immediately sent to the MTS1500 module. For

example to set P = (hex) 45, S = 12 and R = 0123

Enter :

P045[cr]
The controller will respond with P-045

Then type S12[cr] Generating the response S-12

Then R0123[cr] Generating the response R-0123

When all values have been successfully entered, press U[cr] to Update

the module and start generating the new frequency. The controller will

respond with :

To save these to non-volatile memory so the controller will boot with the

new values next time it is turned on, enter W[cr] to give the response

To avoid confusion…

Note that the hex values that have to be entered are not the same as in Dave’s original spreadsheet

MTS1500.xls due to bit and byte alignment issues in the way I send data across the interface.

Verticom Synth Control

G4JNT/WW2R

Commands:

Rxxxx

Pxxx

Sxx

Cxxx

Gxx

[U]pdate

[W]rite EE

R 003F

P 061

S 10

C 19C

G 05

R 0123F

P 045

S 12

C 19C

G 05

Updated

R 0123

P 045

S 12

C 19C

G 05

Written

To make comparisons and help with checking, a debug facility has been built-in to the PIC code to

show the actual string of data sent to the module (I only needed this originally for getting the code

operational, but decided to leave it in for convenience).

Type D[cr] to toggle the Debug mode on or off.

Each time it is invoked the controller will respond with DEBUG 0 or DEBUG 1 for on or off

respectively.

If Debug mode is ON, then

whenever a U or W command is

issued the contents of the two

control words CW1 and CW2 are

shown in binary, and can be checked

against those in MTS1500.xls.

MTS1500_JNT.xls shows the hex values.

R 003F

P 061

S 10

C 19C

G 05

CW1 1000000001111111000000000000000000000000

CW2 0000110000100100000000001100111000000000101
Updated

References:
[1] http://www.g4fre.com/mts1500.pdf
[2] http://www.g4fre.com/mts1500.zip
[3] http://www.g4jnt.com/BridgeWave_Synth.pdf
[4] http://www.g4jnt.com/synthblb.asm
[5] http://www.g4jnt.com/synthblb.gif
[6] http://www.g4jnt.com/BCNKEYER.zip
[7] http://www.g4jnt.com/MTS15CTL.ZIP

