
PICS in Am Radio

Andy Talbot G4JNT

SO what is this magic device ?

� The PIC processor is a Single Chip with
Input and Output lines that can be
programmed to do (within reason)anything
you want

� Low power (2 – 5V < 10mA)

� Cheap (~ 50p to a few £s each)

How are they used ?

� With a few programming tools

� Use code written by others for specific jobs

� Programme your own from first principles

� Mixture of both

� Wide Range of device families

� Basic Digital / analogue signal handling

� TO

� Advanced Digital Signal Processing

The Hardware

� All depends on the chip type

� I/O lines (Pins)

� Digital 5V, source / sink 20mA

� Some Schmitt trigger inputs

� Analogue Inputs

� Peripherals (use some dedicated pins)

� A/D Converter

� Comparator

� Timer / Counter

Contd.........

� UART (serial Comms)

� Pulse Width Modulation

� A few specialist ones

� USB Core

� I2C Bus

� CAN Bus

How the code works

� A sequence of instructions are stored in
Programme Memory that work on Data stored
in user memory

� User memory includes all the peripherals and
I/O lines

� The data is swappd about, moved,
manipulated - and conditionally tested

� The programme sequence can be interrupted
and flow changed depending on the outcome
of those tests

--- and that is all they do ----

� 35 Basic instructions in the baseline 16F
family

� (and of those, about half are used most of the
time)

� The peripherals are the complicated bits,
and need the data sheets.

� but for now.....

� A bit of code....

A few ground rules

� All PICs need some setup instructions

� Peripherals need initialising (some even if not used -

a very sore point indeed! RTFM with an unfamiliar device)

� I/O lines defined –

• direction, type – or just for for best PCB layout

� Peripherals have dedicated pins allocated – and may default!

� Clock Oscillator (int / ext, speed, type)

� All these depend on the processor

� Copy from other previous working code – for
that device type

• Some early 1996 vintage initialisation code by G0IAY, when he
introduced me to PICs can still be seen in some of the latest stuff
on the website.

Sample prog (with many setup bits missing)

#define LED PORTB, 3 ;Bit 3 of PORTB

#define Button PORTB, 4 ; Assume if pressed = 0V, high normally

BCF TRISA , B ; Set LED pin as an output

BSF TRISA , B ; Set Button as an input

MainLoop

BTFSS Button ;Test the button, skip next command if high (not pressed)

GOTO Pressed ;If pressd, jump out of loop

BCF LED ;Make sure LED is off, set its connection to 0

GOTO MainLoop ;Cycle continuously when button is up

;.................

Pressed ;Turn the LED on when button is pressed

BSF LED ;Set the LED pin high

GOTO MainLoop

;..................

END

Practicalities
� Write the Source code –

� use any text editor like Wordpad, Notepad,

� or a custom one - part of programing suite

� Generate .ASM file

� Assemble it

� I Use MPASM (from Microchip)

� Any errors are flagged with line number

• (so make sure the text editor shows line numbers!!)

� If all is (eventually) correct – no assembly errors – a
.HEX file will be generated

� This will look meaningless

Blowing the Chip

� PIC programmers are rife. There are
dozens of different ones

� Many homebrew, simple, PC software based
ones. They probably mostly work..... BUT

� Get a proper one

� Microchip PicKit 2

• (or PicKit 3, nothing extra for basic jobs)

� Will do every (modern) device they make

� And often comes bundled with freebies

� There are others (Asix Presto) – I need for
legacy devices

� (Install the programmer Software)

� Connect programmer to PC

� For the PicKit – connect a blank device first

� Use chip adapter,

• or connect the 5 programming wires

� PicKit reads the device type automatically

• Other programmers have to be set

� Load in the .HEX file generated earlier

� Click / Press / Hit the programme button

� Remove chip, solder into circuit

In Circuit Programming

� Two I/O lines dedicated to programming,
along with PGM pin (also device reset)

� Bring out to connection header on the PCB,

� Allows chip programmer to re-prog chip on
the final board

� The header may conveniently allow an
external user interface to be connected, so
pins aren’t wasted – like RS232

� As in the Beacon Keyer module

� No spare I/O pins there with its 8 pin PIC

The ‘JNT Board

Specifically designed as a user I/O interface for
analogue and digital tasks

Circuit Diagram

Details

� 16F628 or 16F819 Processor

� Socket & In-Circuit Programming

� LCD Module

� Rotary Encoder with built in pushbutton

� Up to 5 User I/O lines (analogue or digital)

� Precision voltage reference

� Expandable, development module

Uses

� Analogue

� Monitor several channels and display voltages
- accurately

� Calculate VSWR and Power from ext head

� ?????????????????

� Digital

� Control serial synthesizer chips

� Frequency Counter

� ?????????????????

Ready-To-Go Solutions

� 4 Channel Voltmeter

� 4 voltages on LCD, use rotary control to set and store
decimal point position

� VSWR Indicator

� Feed in FWD and RTN voltages from SWR head,
calculate VSWR independent of power

� Feed in a calibration voltage, use to allow accurate
power display

� Frequency Counter

� Up to ~ 50MHz

� Rotary control to set and store IF offsets

.... Contd......

� Synth Controller

� Control a pair of MFG modules, or similar
synth chips, over dual I2C interface

� Requires PIC programmer if frequencies / IFs
need to be changed

� --------------------------------

� The module will form the basis of future
microwave synthesizer controllers

� Designs based around the LMX family are
rising up the do-list

