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Introduction 

The later versions of the WSJT-X suite introduced the Q65 Mode based on Q-ary Repeat Accumulation 
coding, originally proposed by Nico Palermo IV3NWV [1] , to generate the parity bits for Forward Error 
Correction. In the same way as done for the earlier modes, an in-depth study of the source code was 
made to gain an understanding of how the on-air symbols are generated from a user message [2] - [5]. 
Routines were then rewritten in an alternative programming language (PowerBasic)  to check they all 
worked properly, giving the same result as the WSJT-X utility programme Q65CODE.EXE. 

Only certain message types are considered in this study, a free text message payload of up to 13 
characters and ‘Telemetry Mode’  for up to 173/4  hexadecimal characters. The latter has been 
introduced to give users direct access to the raw 71 data bits of the payload. Other message types are 
described in the WSJTX manual. The payload is made up of 77 bits with six of these reserved for 
message type. The two message types covered here are those most likely to be needed by users who 
wish to implement stand-alone transmitter sources such as beacons and for remote monitoring or 
telemetry systems.  

Source Coding 

Q65 uses the same source coding as FST4, FT8, FT4 and MSK144 to convert a user message into 71 bits 
of payload data. The compression technique for the free text mode is slightly easier to visualise than 
that for the slightly shorter message in the earlier modes like JT4 and JT9 but cannot be done using 32 
bit, or even 64 bit integers in most high level languages. Nor can telemetry mode be generated using 
these standard numeric variable types. If a number has to be visualised at all, it needs to be a variable 
that can hold a 71 bit value or a bit array; special routines need to be written to work with this. In 
practice it is easier to work with a string or array of individual ‘1’ or ‘0’ bits and write routines to perform 
basic arithmetic on them a byte at a time.  

Free text - Taking the 13 characters of the message from the left hand side, each character is converted 
to a value from 0 to 41 based on its position in the allowed alphabet. 
" 0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ+-./?". The first is [space] with a value of 0, ‘0’ =1, ‘1’=2 
…, ‘A’=11 etc. up to ‘?’ = 41. The 71 bit value is built up by progressively adding and multiplying by 42. 
The maximum possible value is therefore  4213, which is less than 271. Taking this as a string of 71 bits, six 
more bits “000000” are appended to the RHS to label it a free text message. The resulting 77 bits go into 
the next part of the encoding process. 

Telemetry Mode – A message expressed by up to 18 hexadecimal characters such as 
“5657A7EDEADBEEF123” or “0123456789CAFEEF01” converts directly to the 71 bits of the payload. 
Note that the left hand hex character can only take on a value of 0 to 7 to ensure the most significant bit 
is never used, so as to maintain just 71 bits. A hex string shorter than 18 characters is assumed to have 
leading zeroes to make up 18 hex digits. Six more bits  “101000” are added to the RHS to make up the 77 
bit source data. 

A further “0” is appended to make the number of bits a multiple of 6 and the message is split up into 13 
6 bit values, message symbols, each taking on a value of 0 – 63. The left-most block of 6 bits form the 
first message symbol, moving to the right 6 bits at a time to reach the final 13th symbol. 

 

 

 



 

Cyclic Redundancy Check with bit-flipping 

A 12 bit CRC is added to allow the decoder software to reject all false decodes that can arise from 
chance events and incorrect application of error correction. Unlike all the other WSJT-X modes, Q65 has 
a peculiarity in defining the input to the CRC algorithm. For compatibility with Nico’s original work on 
QRA codes, each input symbol or block of six bits is flipped end-to-end, or reversed, so bit ‘0’ becomes 
bit ‘5’, bit ‘4’ becomes bit ‘1’ etc. This is done to each one of the 13 input symbols / blocks of six bits. The 
result now has to be stored in a separate buffer purely for CRC computation. 

The CRC is 12 bits long (two symbols) and is computed by shifting the 78 bit reordered sequence left one 
bit at a time. Each bit that pops out of the shift is then left-shifted through a 13 bit register R. If the bit 
appearing at the left hand side of R (actually its left most or 13th bit) is a ‘1’ the contents of R are XORed 
with the CRC polynomial ‘1100000001111’. If the 13th bit is a ‘0’ the value in R remains unchanged. 

After all 78 input bits have been through the process, the 12 LSBs, or two symbols remaining in R give 
the CRC. The pair of six bit symbols are each bit-flipped to get the final value used in transmission. 

The 12 reflipped bits in R forming the modified CRC are appended to the end of the original unflipped 
message to give a 90-bit sequence that goes into the parity generating process. 

As an alternative to making a separate buffer for bit-flipped input data, each separate 6 bit symbol can 
be taken from the main store in the same order described, but each of the six bits is fed into the CRC 
process by RIGHT SHIFTING. This has the effect of doing the bit reversal as an integral part of the CRC 
generation process so does not require a separate buffer. Note that it is still necessary to bit-flip the two 
six bit symbols making up the CRC before transferring these to the end of the message symbol set. 

 

Parity Bits  

If described in mathematical terms, calculating the parity bits can appear horrendously complicated, 
involving multiplication and addition of values treated as polynomials in a Galois field GF(64) which, 
unless you have an intimate knowledge and understanding of how to do this, is utterly meaningless. 
However, ignoring the details of the GF maths and noting everything is done on six-bit symbols leads to 
a simple algorithmic approach. GF(64) addition turns out to be just a quite straightforward and simple 
XOR of the two six-bit values. No carry is involved as would be the case for ‘normal’ addition. 

Multiplication is more involved, and is done ‘using logarithms’. Two 64-entry precalculated tables have 
been generated. They can be found in the Fortran source code, in the file ‘Q65_encoding_modules.F90’. 
One table is called ‘GF64Log’ and consists of the GF(64) arithmetic version of the logarithm of each of 
the input values 1 – 63. Log of zero is impossible and this is treated separately, as is an input of 1 for 
either of the two input values since 1 multiplied by anything, even in GF maths, yields the same value. A 
table lookup for each of the two input values is made and the results added modulo (64). The resulting 
sum is then used as lookup into another table called ‘GF64antilog’ which does what its name implies. 
The result is the GF(64) product of the two input numbers since adding logs then taking the antilog is 
equivalent to multiplying the originals. 

Parity Bits are generated by taking reordered or permuted input symbols, several times for each (the Q-
ary name of the process). The 15 message symbols (13 data plus two parity) are permuted and  
repeated for an effective collection of 50 interim output symbols. Each of these is multiplied by a 
weighting value. 

The permutation and weighting process is transparent, being performed in a two dimensional table 
called ‘generator’ also to be found in the same .F90 source code file. The table matrix has 15 columns 



corresponding to each of the 15 input symbols, referenced here by the ‘i’ variable, and 50 rows, 
referenced here by ‘j’. Each input symbol is taken in turn and used as one coordinate for the table 
lookup. The other coordinate is a count from 1 to 50, labelled ‘j’ here. This is repeated for each input 
symbol. 

A 50-long array of parity symbols pointed to by ‘j’ referred to as  ‘codeword’ is first initialised to zero. For 
each count of ‘j’ the two-dimensional generator table is accessed with the value (i , j). The value looked 
up is multiplied GF(64) by the associated message symbol msg(i) and added GF(64) to codeword(j). Thus 
each of the 50 values of the codeword are progressively built up via terms from the ‘generator’ matrix 
that each include different weighted combinations of each of the source bits. It needs to be noted that 
many terms of the generator matrix are zero, so only certain combinations of input symbols influence a 
particular codeword symbol. 

The 50 codeword symbols are appended to the end of the 15 message symbols to give, initially, 65 
channel symbols. For convenience, a 65 long ‘codeword‘ array is used to hold both source and 
destination. The first 15 entries are set to be the input message, then the remaining 50 higher entries 
are pointed to by the ‘j’ counter with an offset of 15.  

Done this way, the parity generation process can be seen in this pseudo-code. The GF(64) routines have 
been highlighted and renamed GF64+ and GF64* to indicate their similarity in use to normal 
mathematical operators. GF64+ could have simply been replaced by an XOR operation, but to keep faith 
with the original Fortran source code is shown this way. A straightforward description of polynomial 
arithmetic can be found at [7]. 

 

A graphical view of the generator can be seen below. In this table, the 15 input symbols are shown on 
the vertical axis; 13 source symbols in blue and the two CRCs in red. The 50 check symbols appear 
horizontally, labelled 16 to 65 representing the symbol number in the output sequence.  

 

 

 

codeword(1 .. 15)  =   message(1 .. 15) 
For i = 1 to 15  ‘Count the input message symbols 
   For j = 16 to 65  ‘jcount + 15 to allow one single input and output array 
     codeword(j) = codeword(j) GF64+ (codeword(i) GF64* generator(i , j-15) ) 
   Next j 
Next i 
 



The numbers at each intersection of certain rows and columns are the generator table contents. Each 
check symbol is formed by the vertical GF addition (XOR) of the GF multiplication of the number at the 
node with the value of each symbol. When no number appears, the corresponding source symbol does 
not contribute to that particular check symbol. Numbers in grey at the bottom represent the number of 
source symbols contributing to that check. Those on the right are the number of check symbols that 
source influences. 

 

Puncturing 

Of the resulting 65 symbols now in ‘codeword’  the pair carrying the CRC at locations 14 and 15 are 
removed or punctured to give 63 information carrying symbols. 

 
Synchronisation and Tones 
 
The 63 information symbols are now merged with a 22 symbol synchronisation vector. An 85 symbol 
output array is initialised, and a value of 0  (corresponding to the lowest tone) inserted at locations  
1, 9, 12, 13, 15, 22, 23, 26, 27, 33, 35, 38, 46, 50, 55, 60, 62, 66, 69, 74, 76, 85. This is the pseudo-
random synchronisation vector. 
 
The remaining empty locations 2 .. 8, 10, 11, 14, 16 .. 21, 24 … etc. are successively filled with the 
message symbols plus one to give a total of 65 different tone values. 0 for sync, 1 to 64 for information. 
 
Depending on the speed and tone-spacing variant of Q65 in use, the tone number is multiplied by the 
tone-spacing  and added to a baseline, or tone-zero frequency to give the final output tone for each 
symbol. 
 
The utility Q65CODE.EXE included within the WSJT-X suite shows the output from each of these stages 
(except bit flipping in the CRC) and can be used to check progress when writing your own code. An 
example for the free-text message ’g4jnt testing’ is shown in the box below. 
 

 

Output from Q65CODE.EXE 

.  
 

C:\WSJT\wsjtx\bin>q65code "g4jnt testing". 
   
 Generated message plus CRC (90 bits) 
6 bit :   13  63  22  63  36   8   6  57  56  24  38  26   0  47  38 
binary: 001101111111010110111111100100001000000110111 
        001111000011000100110011010000000101111100110 
 
 Codeword with CRC symbols (65 symbols) 
 13 63 22 63 36  8  6 57 56 24 38 26  0 47 38 47 55  8 44 22 
 22 14 35 19 23  3 58 29 33 61 55 55 15 51 21 11  3 28 40 40 
 60 34 59  4 30  8  4 34 46 40 51 33 33  6 15 17 28 46 30 43 
 32 24 25 26 36 
 
 Channel symbols (85 total) 
  0 14 64 23 64 37  9  7  0 58 57  0  0 25  0 39 27  1 48 56 
  9  0  0 45 23  0  0 23 15 36 20 24  0  4  0 59 30  0 34 62 
 56 56 16 52 22  0 12  4 29  0 41 41 61 35  0 60  5 31  9  0 
  5  0 35 47 41  0 52 34  0 34  7 16 18  0 29  0 47 31 44 33 
 25 26 27 37  0 
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