
G4JNT PIC Controller Software Manual. Page 1

Software Manual

This note describes the installation and use of the PIC software currently available for the General

Purpose PIC Controller. Three Ready-to-Go packages can be supplied, either as .ASM/ HEX code

for you to do your programming, or (at additional cost) as ready programmed PICs.

Note on Assembly Files and structure

All PIC assembler code is supplied with these packages for you to play with and use as a basis for

modifying and developing your own code. Many routines in here are common across most of the

software designed for this module. A list of the most used ones are given at the end. I strongly

advise you to at least look at the code in the .ASM files, in conjunction with a data sheet for the PIC

device open at the Instruction Set Summary. See also ‘A Bit More on (my) Assembly File Structure’

at the end of this document

4-Channel Voltmeter

A 16F819 device with its integral A/D converter contains the code 4chanVmeter This PIC has a

maximum of 5 analogue input channels, although for our purposes one of these, A3, is allocated to

the voltage reference. A MAX6004 4.096V precision reference should be installed on the PCB in the

position marked.

The remaining four analogue inputs go to pins labelled 0,1,2,4 on the 8-way header, which pass to

the PICs pins via optional series resistors and filtering / attenuation. For voltages in the range 0 –

4.095, connect a resistor in the range 300Ω to 1kΩ in series in the R1 – R3 and R5 position). R4

should no be installed unless you need to make use of the voltage reference output for any external

analogue conditioning such as adding voltage offsets. Capacitors whose values are non-critical can

be added as nose filtering in the C1-C3 and C5 positions.

The 4chanVmeter software allows the position of the decimal point in the display to be shifted to

cope with voltage dividers of 10, 100 and 1000. For 10X, allowing voltages of 0 – 40.95V to be

displayed, a 10:1 potential divider can be made from a 9.1kΩ resistor in parallel with a 820kΩ in the

R1-R5 positions (piggy-back the two) and by adding 1kΩ resistor in the C1-C5 positions. If filtering

capacitors are still wanted here, they can be piggy backed on top of the resistors.

For X100 operation, the divider is made up from the same 1kΩ resistors to ground, but the series

resistor of 99kΩ is best made up from three 33kΩ resistors mounted off board to allow the higher

voltage to be shared across all of them, and keep it away from the sensitive PIC module. This is

certainly essential for X1000 4kV measurements!

Changing the Display Format

G4JNT PIC Controller Software Manual. Page 2

When turned on the display will briefly show an introductory message, then start showing the four

voltages in a display similar to that shown. Chan 1 is the voltage on the pin labelled 0 on the 4-way

header, Chan 2 that on pin 1, Chan 3 on pin 2 and Chan 4 on pin 4.

To change the position of the decimal point in any channel, push down and hold the push button for

two seconds. The display should then change to that of Figure 2 .

Rotating the rotary controller will then shift the display between 00000/0.000/00.00/000.0 When

it is showing the correct format for Channel , press the button briefly, and the display will change to

showing the format for channel 2. Rotate the knob to obtain the desired format and push briefly to

store the format for this channel. Repeat for channels 3 and 4. Pressing the button will rotate

through all four channels repeatedly allowing you to alter the position of the decimal point. When

all are set to your satisfaction, press and hold down the button for 2 seconds to save the format in

non-volatile memory. These settings will remain until altered again in the same way.

 Voltmeter Software Details

Refer to the source code listing in 4chanVmeter.asm . The PIC code selects each analogue channel

input in turn and connects this to the internal 10-bit A/D converter. The A/D output is a number in

the range 0 – 1023, corresponding to 0 – 4.092V on the input with a step size of 4mV. In the

subroutine ReadADAv 16 successive measurements are made on the selected channel and the

results summed to give a total in the range 0 – 16383. This combining of 16 readings performs

averaging on the input signal and serves to increase the measurement resolution. According to the

maths of statistics, an improvement equal to the square root of the averaging factor can be

expected; so 16 times averaging ought to give four times, or two extra bits worth of resolution.

Which is very convenient, as the resulting 12 bits effective accuracy from the A/D is equal 4096,

which just happens to be the reference voltage!

In the routine ReadScaledAD the summed result is multiplied by a constant number stored in one of

four EEProm locations – one corresponding to each channel. The default values for all four are fixed

G4JNT PIC Controller Software Manual. Page 3

at 64 for each channel, so the final measurement for the first channel is a number in the range zero

to 16383 * 64 = 104851 This is divided by 256 by the simple expedient of throwing away the least

significant byte, leaving a two byte value holding a number in the range 0 – 4095. This is converted

to BCD and sent to the display. The whole process is then repeated for the other three

measurement channels

The main loop is continually testing the button input line press and measuring the duration of any

press. Action is then taken on long or short presses accordingly. Study the source code listing for

full details. The names of all the appropriate subroutines should be self explanatory, and all

relevant sections of the PIC code are commented.

To gain experience with PIC programming, try adjusting the four constants stored in EEProm to give

scaling factors other than just the powers of 10 corresponding to decimal point placement. A value

of 32 stored in the appropriate location, for example, will cause a value to be displayed in the range

0 – 2.047 (or 20.47, or 204.7) for that channel. Other numbers can be selected for arbitrary scaling

in the range 1 – 255, allowing multiplication of between 1/64 to 255/64 (.0156 to 3.98) to be

applied to the displayed value. To change these EEProm –stored values, a PIC programmer such as

the PicKit 2 and a code assembler like MPASM will be needed .

For further enhancements, modify the code to for stored offsets – addition subtraction routines can

be found in other listings within this archive.

Auto SWR Bridge Display

To be able to use this PIC code, you will first have to make/obtain/modify an RF head to deliver two

DC output voltages corresponding to Forward and Return signals. Ensure this is properly balanced,

ie gives similar voltages on FWD and REF when the direction of RF flow is reversed, and that the

voltage output during normal operation, including under mismatch conditions does nor exceed

4.09V For accuracy and linearity, it is usually better to design for a higher voltage out from the

diodes and use a potential divider to bring this down to the input voltage range – which also allows

for calibration and balancing.

Three analogue measurement channels are needed for the full SWR and power indication; Chan 1

(Pin-0 on the 8-way header) takes the FWD voltage, Pin-1 the REF and pin-2 the power calibration

input. The power calibration uses the 4.096V reference output, so a resistor of a value determined

below needs to be installed in the R4 position. Non-critical valued resistors of a few hundred ohms

to 1kΩ can be installed at R1 – R3 positions with C1-C3 to add RF decoupling and filtering.

SWR is calculated by measuring the voltage on the FWD and REF inputs and calculating the ratio

between them. Provided the analogue channels are matched, no other calibration is needed. Power

measurement, on the other hand, requires user calibration, which can only really be made in

conjunction with another, calibrated power meter. Therefore, the digital power reading here is

obtained by measuring the FWD voltage reading, squaring it (as Power is proportional to V
2
) then

multiplying by a value obtained by measuring a voltage on the third channel. This is turn is set

G4JNT PIC Controller Software Manual. Page 4

during the calibration process and can be defined by a preset resistor, or preferably by select-on-test

fixed resistors. Several switched resistors can even be substituted for use with different RF heads,

and the individual ones can even be built into the heads themselves, with a standard multiway

connector connection used to carry the DC voltages, allowing plug-and-play swapping.

There is no setup on the PIC Module; after switch on and the introductory message, the display

jumps straight to that shown:

The top line reads shows the input voltage to FWD and

REF channels (in mV) with the second line indicating the

VSWR calculated from these. In the example shown

VSWR = (3120 + 412) / (3120 - 412) = 1.30

The bottom line shows the A/D converter output on

channel 3, the power calibration input, on a scale of 0 – 1023. The power calculation is formed

from the forward voltage reading and this calibration as described below.

SWR and RF Power Display Software Details

Refer to the source code listing in SwrMeter.asm . Inside the main loop the FWD and REF values

are read and converted to mV for the first line of the display, in a manner similar to that for the

voltmeter described above, except that the A/D is just read once with no averaging.

The power calibration voltage is read and multiplied by a constant value of 16 (stored in EEProm to

allow for a later change) to give a Power calculation constant in the range 0 – 16368

The ReadPwr routine is then called which makes 16 consecutive readings of the FWD voltage and

sums them to generate a 14 bit number in the range 0 – 16383. This is multiplied by itself

(squared) and the lowest byte of the result thrown away (divide by 256) to generate a value from 0 –

4095 which is multiplied by the Power cal constant above. The resulting number, is interpreted as

Watts * 65536. So the lowest two bytes are thrown away (divide by 65536) and the result in the

range 0 – 1022 is interpreted as Watts, converted to BCD and displayed.

This gives an upper bound to the power display. If the channel 2 cal voltage is at full scale, 4.095V,

then a FWD voltage of 4.095V will correspond to 1022 watts. By changing the Cal voltage input,

this power level can be made any value. Once calibrated for a known FWD voltage / power

combination, provided the Cal voltage remains fixed, and change in FWD will result in a correctly

tracking power reading. (See the note at the end about diode drops and linearity)

In the ReadSWR routine, FWD and REF voltages are again read as 16 summed and averaged values.

The FWD reading is multiplied by 2
16

 by appending two zero low-order bytes and FWD divided by

REF in the routine Divide32x16 The output from this is the reflection coefficient, Rho’ , as a value

from 0 – 65535. Any spurious or erroneous values are checked for (like REF greater than FWD – it

can happen with badly adjusted SWR heads) and substitute default values inserted.

G4JNT PIC Controller Software Manual. Page 5

The calculation 100* (64K + Rho’) / (64K – Rho’) is then made which is converted to BCD, a decimal

point inserted and sent to the display as VSWR in the range 0 to 99.99 Refer to the .ASM listing for

full details, as the promotion and scaling needed for the integer maths gets a bit involved.

Hopefully the comments in the assembler listing explain the processes satisfactorily.

Linearity and Diode Drops

The SWR and power calculations assume the voltage in is linearly related to RF power which is not

the case for diode power detectors. While it would be possible to insert a fixed value of diode drop

into the PIC calculation, or even a first or second order approximation without too much effort it

was decided this would complicate things too much. If the SWR head is designed to give 10 – 15V

for full output power, then the effect of the diode drop on the resulting SWR and Power values is

minimal. Accuracy worsens at lower power levels as voltage drops, but reading accuracy, especially

SWR, are in most practical cases of less importance here.

As an exercise in programming, try adding a fixed ‘diode drop’ voltage to the FWD and REF readings.

Assume say 0.65V constant drop, and work this out in terms of a 4.096V reference with a 10 bit A/D

(all right, its equal to 162). Adding this to each raw A/D reading is the simplest solution.

Frequency Counter

The FreqMeter software implements a frequency counter with selectable gate times of 10ms,

100ms and 1s allowing 100Hz, 10Hz and 1Hz frequency readout resolution respectively.

 The 16F628 PIC is used in this design (although the 16F819 has all the necessary peripherals there

are a few subtle differences in setting up and EEProm reading). A useful peripheral function inside

this PIC is a 16 bit counter / timer – TIMER1 - that can be clocked at several tens of MHz from an

external source, and read by the PIC . The vagaries of allocation of I/O pins means the input has to

be made via PORTB, 6 which is one of those brought out to the 4-pin header otherwise used for in-

circuit programming . The one labelled C. This has a Schmitt trigger input, so add an external pair of

resistors of around 1kΩ each to bias at Vcc / 2 and AC couple the RF onto this pin though a capacitor

of 100nF. A RF input of 4dBm or more in then enough to operate the counter.

The data sheet is a bit vague about the maximum speed capability of this counter – suggesting it is

20MHz, the same as the processor clock. However, actual tests (on a not-very-statistically-valid set

of two chips from the same batch) show that it will run at frequencies up to about 80MHz; so to

play safe lets just call it 50MHz maximum.

For normal operation with the stored IF offset, turn on

and after an introductory message the display shown

will appear. To toggle gate times press the button to

shift though 10/100/1000ms. On the 1s gate time

setting, the button may have to be held pressed for up

to 1s before it is detected.

G4JNT PIC Controller Software Manual. Page 6

IF Offset

A user defined IF offset which can be added to, or subtracted from, the input frequency can be

stored in the PIC in EEProm. To change the stored value, hold down the pushbutton while

switching on, or resetting the controller. Keep pressing the button until the introductory message

goes and the display goes blank. On releasing the button, the IF offset setup display will appear;

Press the button briefly to move through the digit

to be changed, as indicated by the cursor. The

rotary control is then used to set that digit. When

under the sign, the rotary control is used to toggle

between plus ‘+’ or minus ‘-‘ offset. TO

complete the entry, press and hold the button for

2 seconds, whereupon the new value will be stored to EEProm and normal operation resumes.

Negative Frequencies

 The stored IF offset is added to, or subtracted from the input frequency. If a negative IF offset is

stored that is significantly greater than the input frequency, the resulting display will correctly show

a negative frequency. This capability has been included for upconverting receivers where the IF lies

above the input band. In this situation , FIF = FRF + FLO, so the wanted indicated frequency (FRF) is

obtained by measuring FLO and subtracting the higher value of FIF to give a negative result.

Frequency Meter Software details

Refer to the source code listing FreqMeter.asm. As the TIMER1 counter is only 16 bits in length,

it has to be continually tested for overflow by testing the flag in the interrupt enable register. Each

time the counter overflows, another 16 bit counter made up of the two registers FreqCountHi/Lo are

incremented, giving a 32 bit count overall.

The main loop first calls the critical timing part of this software, the routine MeasureFreq Inside

this routine, the combined 32 bit counter is first cleared and TIMER1 enabled to start it counting

from the input signal. Another 16 bit counter GVHi/Lo is preloaded with a value defining the gate

period. A loop is organised so is continually testing for overflow and decrementing a loop counter

for each pass though with all branches and tests being carefully equalised to have constant length

(number of clock cycles) by padding out with strategically placed nop statements. A constant delay

of 16 clocks is achieved for each pass though. After the gate defining counter has decremented to

zero after the required number of passes though the loop, TIMER1 is stopped and the resulting

value frozen. The value to be prestored in Gv in therefore equal to the gate period in seconds,

multiplied by the clock frequency of 1MHz and divided by the 16 clocks in the loop. 1s requires a

value of 62500 (which just fits into a 16 bit count), 100ms gate period needs GV = 6250, and 10ms

GV = 625

The 32 bit count now holds the number of input cycles in either 10ms, 100ms or 1s gate time and

needs to be corrected by the IF offset before display. The IF offset is stored in EEProm in units of

G4JNT PIC Controller Software Manual. Page 7

1Hz, so at the lower gate times, the stored value has to be first divided by 10 or 100 before being

added to or subtracted from the measured count. The result of the calculation is then converted to

BCD, a decimal point inserted at the appropriate place for showing the frequency in kHz, and sent to

the display. The main loop also tests for button presses, and when detected, changes the gate value

accordingly, restarting the counter.

At start up the button is tested and if pressed the PIC enters the UserSetup block of code. This

monitors for short or long button presses, and reads the rotary encoder for count-up or count-down

pulses. The rotary encoder is read as an interrupt driven routine which also makes use of the

Timer0 peripheral in the PIC device for contact debouncing. See FreqMeter.asm for more details.

Accuracy and Resolution

Ultimate frequency measurement accuracy depends on the crystal oscillator being set to 4MHz for a

resulting 1MHz clock rate. A trimmer capacitor can be installed on the PCB to facilitate this. Use a

separate receiver or frequency counter to set this as accurately as possible. Try to use RF leakage

only to detect the signal for setting purposes. Any probe capacitance on the PICs osc pins will shift

the frequency leading to inaccurate setting.

All frequency counters have an inherent counting uncertainty of one count, but there is another

annoying error in this particular application that is not easy to correct for. In order to read the

TIMER1 register, the PICs internal load has to be synchronised with an edge of its 1MHz clock. This

results in an additional delay on the gating period of ‘about’ half a clock cycle, or around 0.5us. At

1s gate period, this corresponds to 0.5 parts per million loss in accuracy, so introduces 5Hz error on a

10MHz signal. At shorter gate periods the error is less noticeable as it is now below the inherent

LSB resolution) Since the error introduced is now related to the input frequency it can’t be

corrected by subtracting a constant offset. It also can’t be corrected by tweaking either the clock

frequency, or the loop delays as the tweak would have to be changed for each gate period. So I

ignore it and just accept a reading a bit on the low side at maximum resolution. This is one

reason, (amongst several others) that a 10s gate time is not made available.

As a more advanced programming exercise, change the PIC crystal frequency (anything up to 20MHz

is OK, and in practice even higher values can work). Identify the values in the software to change

to correct the display. Cope with the GV counter needing to have a higher value than can fit into a

16 bit counter . A higher clock will reduce the effect of the annoying synchronisation error . Note

that certain delays are needed within the LCD writing routines, so the other programmed delay

routines (such as DelayNms) will need to be changed

G4JNT PIC Controller Software Manual. Page 8

Synthesiser Controller

The software mfgctl_02 is of more specialist nature. It will control two independent synthesiser

chips of the TSA5505, SP5505, or U6239 type that use an I2C two-wire bus for programming. Such

devices are in widespread use for TV, satellite and cable TV tuners, and many of the 2.4GHz Rx and

Tx modules. This design was specifically intended for control of a pair of G1MFG FM TV tuner

modules, allowing, for example, independent tuning for transmit and receive.

 Ports A0-3 are configured for digital operation (use a low value resistor in series with each for

protection) and connected to the synthesiser chip SCL and SDA programming lines according to

Table 1. On the MFG TV modules, the existing PIC is removed so the connections from the

controller can conveniently be made pins 1 and 2 on the now-empty IC socket.

Table 1 Connections for dual I2C bus synthesizer chip programming.

Controller Conn Synth Unit I2C Bus Line G1MFG Module Connection

 A0 1 SDA 1 Module A Pin 1

 A1 1 SCL 1 Module A Pin 2

 A2 2 SDA 2 Module B Pin 1

 A3 2 SCL 2 Module B Pin 2

Freq 1 or Freq2 are selected in turn, and may be altered in 125kHz or 4MHz steps. Selection is made

by repeatedly pressing the pushbutton to cycle though each frequency tuning option.

Please note that contrary to the statement in the RadCom article, IF Offsets and tuning limits

cannot be changed using the rotary control / pushbuttons. This was too complicated to

implement at the time of writing. Instead, these values are stored as constants in the PIC and can

only be changed with a PIC programmer. See mfgctl_02.asm .

 The relevant code appears at the start of the listing, and is repeated here. This version shows an

IF offset of 479.5MHz included within the Rx module. All values are stored as integer multiples of

125kHz. Note the ability of the assembler to perform simple (integer) maths to make the storing of

variables and constants a bit more easily understood.

G4JNT PIC Controller Software Manual. Page 9

As an advanced programming exercise, first arrange for the IF offsets and tuning limits to all be

stored in EEPROM rather than being called up as constants. Then work out a way of adding the

facility to alter these with the rotary encoder – perhaps by going into a setting routine while holding

the pushbutton down at switch on.

When you have managed this, please let me know and consider adding your code, (with full credits

of course) to this website.

A Bit More on (my) Assembly File Structure

Over the 16 or so years I have been programming PICs, the resulting assembly code has fallen into a

common structure which aids readability and understanding.

1) It starts at Org 0 and usually jumps straight to startup.

2) Then comes any interrupt service routines (which have to lie at prog-memory location 4).

Even if no interrupts are used, a retfie instruction is usually placed here “just in case” some

catastrophe happens later down the line and interrupts do appear.

3) Then the Startup section, jumped into from the reset point at location 0. This is where all

initialisation of ports, peripherals and variables is performed and startup variables

initialised.

4) Followed by a MainLoop which the code loops round repeatedly, or looks for user

interaction, or... or....

5) Below this are all the subroutines, all given meaningful names

;Rx Module

 IFOFFSET1 = d'479' * 8 + 4 ;479.5MHz IF, arithmetic can't do 0.5MHz !

 DMAX1 = d'2700' * 8 - IFOFFSET1 ;Determined by measurements

 DMIN1 = d'2250' * 8 - IFOFFSET1 ; max/min lock range

 STARTFREQ1 = d'2500' * 8 - IFOFFSET1 ;Stored starting freq after assembly

;Tx Module

 IFOFFSET2 = 0

 DMAX2 = d'2650' * 8 - IFOFFSET2 ;Determined by measurements

 DMIN2 = d'1950' * 8 - IFOFFSET2 ; max/min lock range

 STARTFREQ2 = d'2500' * 8 - IFOFFSET2 ;Stored starting freq after assembly

G4JNT PIC Controller Software Manual. Page 10

6) Any code that requires either computed goto statements or lookup tables are located at the

end of programme memory, usually in page 0x700 for the devices used here . This is so I can

keep control of the high order byte of the programme counter in such calls.

7) Tables always use the assembler abbreviation dt (for define table). This offers far more

flexibility in laying out tables and text etc in a sensible way than a huge list of retlw

commands.

8) Extensive use is made of #define statements to give meaningful names to I/O lines.

Annoyingly these have to be placed at the start of the listing

9) Variables are defined in a cblock section at the end. Contrary to many other PIC

programmers listings , each variable does not have to be individually assigned a value, and

certainly not using the ‘equ’ statement. Also, register names can be put on a single line

separated by commas, which certainly helps readability. Not a lot of other programmers

seem to know this.

10) I don’t like multiple return statements in subroutines, and certainly not in interrupt

handlers. Although they do just occasionally make life easier. More often, a jump to an

‘out of routine’ label is preferred. And always in interrupts.

In the assembly listing, separators are included as comments at all strategic points. The characters

making up the lines show what is being separated:

;--------------- is used to separate independent subroutines from each other, and also areas of the

main code that perform differing tasks, and reached by separate routes. Normal

programme flow rarely crosses this boundary – one exception is sometimes the

transition from startup to main areas.

;========= serves as a boundary between completely separate areas of code. Interrupt service,

Main, subroutines, and table areas get this break type. Programme flow never

crosses it; always a call or goto command

;.............. is used to separate short chunks the programme flow will never pass over . They will

always be reached by a break in the direct flow, for example goto statements and

skipped instructions.

Single line gaps separate small chunks of code doing each task.

Timing critical code usually has its clock cycle count spelled out.

PICs often have quite a lot of oddities in their startup and initialisation and register addressing. In

many cases comments in the assembly listing explain these – such comments are usually themselves

usually because I copy and paste my code repeatedly, so some comments could be 16 years old.

These rules are flexible and mostly, but not always rigidly, applied.

.......

