
B2 B1 B0 Speed            B5 B4 B3  Duty Cycle 
 
   0  0  0  256ms  /  OP1    0  0  0  100%  
   0  0  1  512ms  /  OP2    0  0  1  50%  
   0  1  0  4.096s  /  OP4    0  1  0  33%  
   0  1  1  8.192s  /  OP8   0  1  1  25%  
   1  0  0  4.096s  / OP15  1  0  0  20%  
   1  0  1  8.192s  / OP31    1  0  1  16.7% ( 1 in 6) 
   1  1  0  5ms  (test mode)   1  1  0  14.3%  (1 in 7) 
   1  1  1    20ms   “ “ “ “    1  1  1  12.5%  

 
The links are configured such that a link in place, to ground represents a logic 1.   

 

;callsign  G4JNT 
        de   b'11011010' 
        de   b'10101010' 
        de   b'10101001' 
        de   b'01100110' 
        de   b'10010110' 
        de   b'01100101' 
        de   b'01101001' 
        de   b'10011010' 
        de   b'01011010' 
        de   b'10011001' 
        de   b'01011010' 
        de   b'01011010' 
        de   b'01010101' 
        de   b'01101001' 
        de   b'10100110' 
        de   b'10011010' 
        de   b'01101001' 
        de   b'01101010' 
        de   b'01101001' 
        de   b'10100101' 
        de   b'01010110' 
        de   b'01101010' 
        de   b'01010101' 
        de   b'10101010' 
        de   b'10010110' 
        de   b'01100101' 
        de   b'10010101' 
        de   b'01101010' 
        de   b'10011001' 
        de   b'01011010' 

 
   PIC Based ‘Opera’ Mode Beacon Source  . 

 
Andy Talbot  G4JNT   2011-01-08 

 
       Ver 2       Feb 2023 to support QSO mode Opera (Ver 

1.4) and  others using data copied to the clipboard 
 

 
Here is a PIC based solution for driving a transmitter source with the on-off coded symbols for the ‘Opera’ 
datamode.   Options  allow for the six transmission speeds from 1 to 31 minutes currently used at Ver 1.1.2 of the 
Opera software,  with two remaining speeds for future upgrade.  At the moment these offer two high rates that 
can be used for testing.   Eight beacon durations can be selected but unlike the main Opera software, here they 
are defined as a duty cycle and are set by three links.  The values allowed are 100%, 50%, 33%, 25%,  20%, 
17%, 14%, 12.5%.  The actual Tx delay will therefore be a function of the duty cycle and transmission speed. 
 
Figure 1 shows the circuit diagram of the hardware (a higher resolution is available as operabcn.gif).  The 
transmitter on-off is keyed from the active low Key Line output.  A second output allows the transmitter to be 
enabled, and can be used when running a low duty cycle to save standby power consumption between Tx 
periods.   A LED flashes at half symbol rate to show the operational status and runs continuously, even during 
standby periods.  The Test strobe on port A3 generates a pulse at the interrupt rate of 1.024ms.  It is there for 
convenience when initially testing and can be ignored for all practical purposes.   A 4MHz crystal is used for the 
PIC, as this conveniently allows a  divided down rate for the interrupt using just the internal 8 bit timer overflow 
and the prescalar..    
 
The link settings can be changed 
during a Tx period.   The new 
speed is updated immediately after 
the current symbol ends – so may 
give unpredictable results if the 
settings are changed while actually 
transmitting the code.   
 
The new duty cycle takes effect as 
soon as the current Tx period 
(whether in standby or Tx mode) 
ends.   It is usually advisable to 
reset the module after changing 
settings. 
 
Generating the new PIC Code 
 
As the internals of the Opera coding scheme have not been made available to 
us, the symbols to be transmitted have to be generated from the Opera.exe 
software using the PIC option in the top menu   Ver 1.4.1, used for ‘QSO mode’ 
copies the bit pattern to the clipboard using a ‘copy’ button. 
 
Copy the bit pattern that results to the clipboard. 
The text now has to be converted to a format for the PIC assembler to read.  
The utility GENOPERA2.EXE will do this for you. Just run   GENOPERA2”   
from a command prompt or by clicking on an icon etc.  If the clipboard contains 
valid data (ie. nothing but ‘0’and ‘1’ characters), the software will then ask for a 
comment to be included in the PIC listing.  Use something like the callsign plus 
any other notes – or nothing at all.    When that is done, the software will 
generate a new file OPSYMBS.INC which should look not totally unlike that 
shown in the box: 
 
Then,  using your favourite PIC assembler (such as MPASM from 
www.Microchip.com ) , assemble the PIC source code    OperaBcn.asm .  This 
will read the custom data set and generate the resulting  .HEX code to be 
programmed into the 16F628A controller. 



 
A four pin header is shown on the circuit diagram and is intended for in-circuit programming.  The connections to 
this are the established (and non-ideal)  ‘JNT standard’ for PIC programming and are the same as all my 
published PIC designs, including all available circuit boards. A lead will need to be made up for interfacing to the 
PIC programmer.  I recommend the PicKit 2 (or 3 if you want) .      
 
Once programming is complete, the module should start sending immediately after power up or reset, with the 
format sent depending on the links in place. 
 
Different versions of the Opera software have used various numbers of symbols per transmitted frame.  At 
Ver 1.1.2, there are 239 symbols per frame, but previous versions have used 183 and 225.  It is quite reasonable 
to expect this may change in future versions.  However many symbols there are, the GENOPERA2 utility will read 
these then pad out with zeros to a multiple of 8 and generate a correctly formatted  OPSYMBS.INC file. 
 
 
Supplied Files 
 
The archive contains the PIC source code , OperaBcn.asm with an include file to get you started.  The code in 
this will generate the transmitted callsign G9BOF – so modify before using on air.  
 
The Data conversion utility GENOPERA2.EXE is included – copy into the same subdirectory as all the other files.   
It was written in super-ancient 16 bit Powerbasic and the source code can be seen in GENOPERA2.BAS.  The 
OperaBcn.hex file compiled using this callsign is included to get the hardware operational;  change the PIC code 
to your own callsign once you know the hardware works.   
 
 

Please  note, some of us are quite happy to provide (at least for non commercial purposes) 
all software and  code to assist home constructors, and for the general self training 
specified as part of the Am. Rad. licence.   
 
Wouldn’t it be nice if GENOPERA could have accepted a callsign then directly generated 
the bits in the same way as my utilities GENWSPR and GENJT4 do.  Instead of having to 
go though the complicated cut and paste routine.    

 
 



 
Figure 1 -   Circuit Diagram 


