
LF DDS + WSJT Beacon Source G4JNT Page 1

LF / Audio Beacon Source for WSJT Modes

Andy Talbot G4JNT October 2011

Overview

The unit described here is a development of the JT4 Generator and 4-Frequency DDS

modules published previously. That could only generate modulation types that used four

tones and was only suitable for JT4 or WSPR. JT65 requires that the DDS supplies 65

equally spaced tone frequencies, so an alternative solution for setting the PIC used for the

DDS from the one generating the code was needed. A serial interface meets the

requirements.

The DDS interrupt, typically at 100kHz or higher, must run continuously. generating the

output waveform. The serial data transfer has to be robust enough to withstand timing jitter

and not interfere with the interrupt process in any way. A synchronous three-wire interface

was chosen, with Clock, Data and Strobe signals. It would have been preferable to keep to

a two wire interface so hardware could remain almost unchanged from the parallel-

programmed four tone version, but although a protocol based on clock counting was tried, it

was not a robust as needed. A modified I2C type protocol was also rejected due to

complexity of implementation of the slave end in PIC software. Details of the three wire

signalling are given in the section describing the frequency source.

As the frequency setting data is now sent over the serial interface, there is now little point in

having the user setting switches (originally for selecting JT4A/c/d/g or whatever) on the DDS.

These have now been moved to the Code generator PIC with the advantage that the

frequency source is now a completely dumb DDS. All frequency information is now stored

in the same device as the code details, message etc. This simplifies reprogramming the

beacon source when changing modes.

JT4 in all its variants (A-G) consists of a four tone Multi Frequency Shift Keyed (4-MFSK)

waveform, with the spacing between the tones chosen depending on the frequency band

and expected spreading. [1] The MFSK message consists of 207 symbols (one of four

sequential tones) transmitted at a rate of 4.375Hz, the whole message therefore taking

about 48 seconds to send. A rigid timing structure is in use, and the start of the

transmission must coincide with the UTC minute interval. For beacon usage, the even

minute has been universally chosen as the reference start time for beacons using this mode.

However, the decoding software does have a monitor function whereby transmissions in

both even and odd minute slots are decoded.

WSPR is very similar to JT4, although is has a symbol rate of 1.46Hz and transmits 162

symbols over 110 seconds on a 2 minute repeat cycle.

For the decoder to work correctly, the start point must be accurately defined, being no more

than a few seconds late, and no more than one second early (the protocol was originally

designed for EME with its 2 seconds delay). The entire message for JT4 and JT65 modes

contains exactly 13 characters taken from an alphabet of letters, numbers and a few

punctuation symbols. WSPR contains somewhat more information coded in a different way

More details of WSJT coding can be found at [2]

JT65 also works with a precisely timed 48 second sequence, but now transmits one-of 65

tones using 126 symbols at a rate of 2.69Hz. 64 tones are dedicated to message data and

LF DDS + WSJT Beacon Source G4JNT Page 2

the other one, the lowest, is a synchronisation tone sent at pseudo random intervals. More

details on JT65 coding can be found at [1]

Code Generator Module

The unit described will generate correctly timed and formatted JT4, JT65 or WSPR words

on the serial interface, sending the frequency data to the DDS for every symbol transmitted.

A 16F627 or 16F628 PIC monitors the GPS serial data line and decodes the real time

information from the GPS. Every even minute, or every minute depending on requirements,

the 00 seconds marker is identified and the pre-stored symbols are sequentially output on

the serial output lines.

Depending on the format transmitted, the PIC has to be programmed with either

JT4GEN_SER.HEX, WSPRGEN_SERIAL.HEX or JT65GEN_SER.HEX as

appropriate. The PIC does generate a CW message at the end of the sequence, but at the

moment this is unused. The external keying option has been removed.

Connecting the GPS module.

The description that follows, as well as the PIC firmware supplied, assumes that serial data

in one of two formats is available. The proprietary binary format given by the Motorola

Oncore or M12 type GPS module at 9600 baud or standard NMEA text messages at 4800

baud carrying the $GPRMC string. The polarity of the data can be selected at the time the

PIC firmware is compiled. Either native 5V logic or RS232 polarity can be catered-for

Figure 1 shows the circuit diagram of the generator module. Two input lines carry the serial

data and 1 pulse-per-second synchronising signal. There is also a third GPS interface

connection shown, an output from the PIC to the GPS receiver. At the moment this is not

used and does not have to be connected. It has been included for any future version that

could include GPS receiver initialisation. A red-green LED shows the operating status and

indicates whether the GPS is synchronised. When valid data appears from the GPS module

long green flashes are shown. When the GPS receiver is not synchronised, these change to

short flashes. When WSJT data is being sent, the LED flashes red at half-symbol rate, and

then shows the CW data.

Note that at the time of writing, this actual PIC code has not

been tested using the Motorola Oncore family of GPS

receiver modules. However, Oncore modules have been

used in other DDS based WSJT sources.

PIC Coding Details

All information relating to the message, frequencies and setup need to be programmed into

the PIC at the start. All values need to be calculated beforehand and included within the

source file which is compiled to give the .HEX file for download to the PIC device. These

include frequency codes for the DDS, WSJT message data and the CW message (when this

LF DDS + WSJT Beacon Source G4JNT Page 3

is implemented). Compile-time flags are used to define the data polarity and format from

the GPS.

The PIC firmware is contained in the source files JT4GEN_SER.ASM,

JT65GEN_SER.ASM and WSPRGEN_SERIAL.ASM .The symbol information resides

in auxiliary include files JT4SYMBS.INC , JT65SYMB.INC or WSPTONES.INC which

can be generated automatically by appropriate utilities availalble from [3]. Alternatively, the

symbols can be derived from the WSJT software, following Joe’s instructions supplied with

the software suite, formatted and entered manually into the include file.

For JT4 and WSPR Each of the 207 /162 symbols is formed from two bits giving a value

from 0 – 3 which are packed four to a byte, most significant first to give 51 / 41 bytes in total.

(As listed, they are read out in order left to right, top to bottom) For JT65 the 63 symbols

are stored directly as values from 0 to 63

Customise the Source File

Change the compile-time flags and CW message data to suit your requirements, and

generate a new symbols .INC include file. Save the new assembler file and use a utility

such as MPASM (available from the Microchip website or included within the MPLAB suite)

to generate a new .HEX file for programming into the PIC device

The code supplied is designed for 16F627A and 16F628A type devices and either are

suitable. If using the 16F628 it is not essential to change the type specified in the assembly

code. Some PIC - programmers may object, but they can usually be overridden.

Compile-time flags.

These appear at the start of the assembler listing as shown in the table below

NMEAPol defines if the polarity of the data coming from the GPS receiver is 0/5V logic

level as supplied directly by most GPS modules, or RS232 polarity for direct connection to a

PC. Some early Garmin modules supply this latter polarity, as do some GPS receiver

systems. . Use 0 for 5V Logic level / polarity, 1 for RS232.

Please note that if true positive/negative RS232 voltage levels are encountered, an

additional resistor of around 4k7 needs to be inserted in the Data In line to prevent excessive

current into the PIC interface pin

GPSDataType should be set to 0 for Motorola binary format data at 9600 baud; Use 1 for

NMEA ASCII format at 4800 baud

BOTHMINUTES (not applicable to WSPR) defines if the JT4 or JT65 is sent every minute,

or every two minutes on the even minute boundary. It should be set to 0 for conventional

even minute transmissions, and set to 1 for near 100% duty cycle transmission of the

message every minute. There is no option for transmitting only on the odd minutes.

IGNOREPPS allows timing information to be derived from the GPS data stream alone,

without any need for the 1-PPS signal. This simplifies the connection for some GPS

receiver modules, but does mean the transmission timing could have up to one second

LF DDS + WSJT Beacon Source G4JNT Page 4

uncertainty. Set to 0 for normal high accuracy timing using the 1-PPS signal, Use 1 for

GPS serial data based timing only.

Compiler Constants

CWSPEED is a compiler constant and defines the dot length of the CW, in milliseconds.

Use d’100’ for 12WPM, d’75’ for 16WPM etc.

BAUD9600 and BAUD4800 should not be changed.

EE Data

CWMsg is a label to show that this line is EEPROM data containing the CW message

inside inverted commas. It can be of arbitrary length and there is space for about 40

characters. The data must have a zero, a null terminator, after the closing inverted commas

exactly as shown to indicate the end of the message. If not present, the software will crash!

If the CW message is too long the compiler will generate an error message about data being

overwritten.

The final line, ControlPLL is a flag to indicate whether the DDS clock X6 multiplier is to be

used. For RDDS configuration it must be set to 0 - PLL disabled. When this PIC code used

with a standalone source, the PLL may be enabled.

.............. Data Type Specific coding :

JT4SYMBS.INC

This include file is generated automatically in exactly the form shown as a result of running

the utility GENJT4.EXE. It should not be necessary to alter the file in any way. As the file

is regenerated and overwritten each time GENJT4 is run, it is advisable to save a copy

under a different name – eg, GB3SCS_JT4SYMBS.INC.

The WSJT software does offer the ability to generate the symbol data in a listed form, and

users may want to use this route instead – for example to include a ‘QSO-type’ message

into the beacon data instead of 13 characters of plain text. In this case, the individual

symbol data in the form of 207 numbers with values 0 – 3 will have to be assembled

manually into the EE data bytes, four-at-a-time starting with the most significant pair of bits.

For example, if the first eight symbols generated are 3,1,2,0,2,1,3,0, the resulting first two

bytes will be b’11011000’ and b’10011100’ or in hex 0xD8, 0xC0. Both these formats,

binary or hex, (or even decimal as d’nn’) are acceptable to the compiler. Read the WSJT

documentation for further details of how to generate the symbol list.

 GPSDataType = 1 ;1 = NMEA 0 = Motorola Binary

 NMEAPol = 1 ;1 = RS232 Levels, 0 = TTL

 BOTHMINUTES = 1 ;1 = every minute, 0 = Alternate (even) minutes

 CWSPEED = d'50' ;CW Dot length, ms

 BAUD9600 = d'40' ;6.N + 18 = Fc/Baud or N ~ (Fxtal/Baud)/24 - 3

 BAUD4800 = d'83'

LF DDS + WSJT Beacon Source G4JNT Page 5

JT65SYMB.INC

This include file is generated automatically in exactly the form shown as a result of running

the utility GENJT65.EXE.

GENJT65 is a “wrapper” programme that calls up another piece of code written by Joe

Taylor for generating the JT65 symbols, JT65CODE.EXE. This is included in the archive.

It is possible to generate the symbols from the WSJT software; see its documentation for

details.

WSPTONES.INC

This include file is generated automatically in exactly the form shown as a result of running

the utility GENWSPR.EXE.

; JT4 Symbols generated from GENJT4 G4JNT Jul 2009

; Message data 'GB3SCS IO80UU'

de 0x00, 0xD8, 0x14, 0xDA, 0xC4, 0x02, 0x8D, 0x28

de 0xAA, 0x0A, 0xC7, 0x9C, 0xEF, 0xD6, 0x68, 0xC3

de 0xA5, 0x74, 0x2C, 0x6A, 0x75, 0x1E, 0xB8, 0x34

de 0xC4, 0xC6, 0xF5, 0xC4, 0x67, 0x33, 0x9D, 0xA4

de 0x59, 0x76, 0xA9, 0x65, 0x83, 0x53, 0x73, 0x50

de 0xC0, 0x51, 0xE9, 0x2B, 0x57, 0x63, 0xE2, 0x34

de 0x26, 0x73, 0xD6, 0x6C

LF DDS + WSJT Beacon Source G4JNT Page 6

DDS Frequency Source

The frequency source implements a simple DDS designed around a 16F627A or 16F628A

PIC programmed with the code named SER_FreqSource.HEX Source code can be

seen in SER_FreqSource.asm .

The desired frequency is sent via the three input lines, Clock, Data and Strobe which

transfers the 24 bit word supplied from the Code Generator.

The DDS runs at a clock rate equal to the device oscillator / 192, or the internal clock divided

by 48. The maximum specified frequency for this device is 20MHz, so with a crystal of this

value, the DDS clock runs at 104.167kHz. Higher crystal frequencies will usually work, and

24MHz is more than likely OK, giving a convenient DDS clock of 125kHz. Another useful

low cost off-the-shelf crystal frequency is 22.1194MHz giving a 115.2kHz clock

The DDS word is based on a 24 bit register, so the resolution is around 6mHz at this clock.

An 8 bit D/A converter is implemented by a discrete 2-2R ladder. The 8 bit D/A, using the

6dB / bit rule of thumb, suggests spurii will be around -48dBc. A plot of the spectrum

generating an output at 25kHz can be seen in Figure 5. The worst case spurious in this

case is at -42dBc.

Figure 2 shows the circuit diagram with a PCB layout in Figure 3 and a mirror imaged copper

track pattern at 1:1 scale in Figure 4 The typical output spectrum can be seen in Figure 5

Frequency information is kept in EEPROM in

the code Generator , and is stored in different

ways for JT4 / WSPR and JT65 versions.

WSJT Tone Spacing and Reference Frequencies for different modes

Mode Tone spacing

calculation

Spacing

Hz

No. of

Tones

Reference Tone,

Number, Freq

AF Frequency

Span Hz

Symbol

Rate, Hz

No. of

symbols

WSPR 12000 / 8192 1.465 4 Centre = Tone 1.5 ,

1400 to 1600Hz

Centre +/- 3 1.465 162

JT65A 11025 / 4096 2.691 65 Sync = Tone 0, 1270.46 1270 – 1449 2.691 126

JT65B 11025 / 4096 * 2 5.383 65 Sync = Tone 0, 1270.46 1270 – 1624 2.691 126

JT65C 11025 / 4096 * 4 10.77 65 Sync = Tone 0, 1270.46 1270 – 1974 2.691 126

JT4A 11025 / 2520 4.375 4 Centre = 1.5 , 1270.46 1272 – 1276 4.375 207

JT4B 11025 / 2520 * 2 8.75 4 Centre = 1.5 , 1270.46 1262 – 1279 4.375 207

JT4C 11025 / 2520 * 4 17.5 4 Centre = 1.5 , 1270.46 1253 – 1288 4.375 207

JT4D 11025 / 2520 * 9 39.4 4 Centre = 1.5 , 1270.46 1211 – 1330 4.375 207

JT4E 11025 / 2520 * 18 78.75 4 Centre = 1.5 , 1270.46 1152 – 1389 4.375 207

JT4F 11025 / 2520 * 36 157.5 4 Centre = 1.5 , 1270.46 1034 – 1507 4.375 207

JT4G 11025 / 2520 * 72 315 4 Centre = 1.5 , 1270.46 798 – 1743 4.375 207

LF DDS + WSJT Beacon Source G4JNT Page 7

 JT4 and WSPR Frequency Calculation and Programming

For JT4, up to four sets of four tones are stored as four bytes each. Only the first three are

used for defining the frequency, the fourth is ignored The set of four in use at any time is

selected via the user switches on the PIC lines A3 and A4. This way, moving between

JT4A, JT4C, JT4E, JT4G for example can be made via switch selection without having to

reprogramme the chip. For WSPR only one set of four frequencies is stored.

The example below is for JT4. For WSPR frequencies follow the same procedure but store

only the first block of four frequencies.

1) Determine the DDS clock, Fclock = Fosc / 192
2) For each of the four desired frequencies, FN calculate the value N from

N = FN / Fclock * 2
24 .

2) Convert to Hex notation and store in the PIC assembly file in the format shown below
4) Repeat for each of the other three frequencies.
5) Repeat all again for the other three switch-selected blocks (JT4 only).
6) Save the data in the appropriate source file.

Example : Tone frequency 24997.8Hz with a 20MHz crystal

 Fclock = 20MHz / 192 = 104166.7Hz
 N = 24997.8 / 104166.7 * 2

24
 = 402617

 Convert to Hex = 0x3D6F42
 Store as three bytes (with a dummy 4

th
 one)

 Assemble the code, using, for example the MPASM assembler
 Programme the chip

 Org 0x2100
FreqData

 ;Direct Freq Gen JT4A Ref 0.125MHz

 de 0x33, 0x2F, 0xC2, 0x65 ; Tone 0 00.0249934MHz

 de 0x33, 0x32, 0x0D, 0x99 ; Tone 1 00.0249978MHz

 de 0x33, 0x34, 0x58, 0xCD ; Tone 2 00.0250022MHz

 de 0x33, 0x36, 0xA4, 0x00 ; Tone 3 00.0250066MHz

 ;Direct Freq Gen JT4C Ref 0.125MHz

 de 0x33, 0x25, 0x6F, 0xFC ; Tone 0 00.0249737MHz

 de 0x33, 0x2E, 0x9C, 0xCB ; Tone 1 00.0249912MHz

 de 0x33, 0x37, 0xC9, 0x9A ; Tone 2 00.0250087MHz

 de 0x33, 0x40, 0xF6, 0x6A ; Tone 3 00.0250262MHz

 ;Direct Freq Gen JT4E Ref 0.125MHz

 de 0x32, 0xF5, 0x44, 0xBB ; Tone 0 00.0248819MHz

 de 0x33, 0x1E, 0x8E, 0x60 ; Tone 1 00.0249606MHz

 de 0x33, 0x47, 0xD8, 0x05 ; Tone 2 00.0250394MHz

 de 0x33, 0x71, 0x21, 0xAB ; Tone 3 00.0251181MHz

 ;Direct Freq Gen JT4G Ref 0.125MHz

 de 0x32, 0x3B, 0x79, 0x52 ; Tone 0 00.0245275MHz

 de 0x32, 0xE0, 0x9F, 0xE8 ; Tone 1 00.0248425MHz

 de 0x33, 0x85, 0xC6, 0x7D ; Tone 2 00.0251575MHz

 de 0x34, 0x2A, 0xED, 0x13 ; Tone 3 00.0254725MHz

(the ‘ de’ before each line defines the four numbers as EE data. Anything after a semi-colon is

a comment for reference purposes only. The ‘FreqData’ label must be on the extreme left

hand side, immediately preceding the data itself. The ‘ org 0x2100 ‘ must be immediately

before the label)

LF DDS + WSJT Beacon Source G4JNT Page 8

JT65 Frequency Calculation and Programming

For JT65, Frequency data is stored in a different way

1) First decide on a reference frequency for the JT65 sync tone – the lowest of the set.

For normal receiver and decoder operation this is tuned so it appears as a 1270Hz

audio tone.

2) Calculate the four byte code to generate this frequency in the same way as is done

for each JT4 tone

3) Save this in the JT65GEN_SER.ASM assembly file in exactly the format shown

below. This is the SyncReference

4) Calculate the lowest tone spacing, that for JT65A and multiply by 256. This is given

exactly by 11025/16 and is 689.0625Hz DO NOT TRUNCATE

5) Calculate the hex code for generating this frequency using the DDS clock rate

determined earlier and as used for the reference. Save this as a four byte value as

shown. This is the ToneInterval

For each transmitted symbol the ToneInterval is multiplied by its symbol code, 0- 63, and

then by 1, 2, or 4 (determined by reading the user switches), divided by 256 and the result is

then added to the SyncReference to give the tone value sent to the DDS.

The user switches are read as follows

00 = JT65A

01 or 10 = JT65B

11 = JT65C

Example, JT65 frequencies transmitted for SSB Rx carrier tuning at 23.5kHz.

125kHz DDS clock (24MHz crystal)
Reference Frequency for Sync tone = 23500 + 1270.46 = 24770.46Hz
N = 24770 / 125000 * 2

32
 = 851106525

Convert to Hex = 0x32BADADD (not quite the same as the table, the difference is approx 1mHz)
Store as four bytes 0x32, 0xBA, 0xDA, 0xDD under the label FreqData
Take the tone spacing * 256 and calculate the 32 bit equivalent
N = (11025 / 16) / 125000 * 2

32
 = 0x1694467

Store as four bytes 0x01, 0x69, 0x44, 0x67 directly under the Reference Frequency data

Utilities for helping in the calculation and programming are included in the archive which can

be found at [3]

 org 0x2100

FreqData ;based on 125kHz sampling rate

 de 0x32,0xBA,0xDA,0xBA ; JT Sync tone 1270.46Hz + 23.5kHz

 de 0x01,0x69,0x44,0x67 ; JT65A Tone spacing * 256

JT65MsgData

 include "jt65symb.inc" ;JT65 tones

LF DDS + WSJT Beacon Source G4JNT Page 9

Serial Interface Protocol

32 bits are sent MSB first on the Data line. The first 8 are a fixed header flag, consisting of

0xF8 in hex, used for checking validity of the received data. This is followed by the 24 bits

of frequency data. All are sent MSB first. Data changes are roughly coincident with the

falling edge of the Clock signal. The clock exits in the low state. After 32 clock pulses have

been sent, when all data has been transferred, a positive going strobe signals that data in

the input register is to be loaded into the DDS frequency register. The strobe is only

recognised if the clock signal is low during its rising edge. The serial clock / data duration is

approximately 2ms per bit, so takes about 64ms to transfer the entire frequency word. This

ensures it straddles many interrupt periods and the resulting timing jitter will not compromise

data transfer.

References

[1] WSJT details, downloads & information

 http://physics.princeton.edu/pulsar/K1JT/

[2] Running WSJT Modes on Beacons

 http://www.g4jnt.com/JTModesBcns.htm

[3] Complete download archive, documentation, PIC code, design utilities

 http://g4jnt.com/LF_DDS_Beacon.zip

LF DDS + WSJT Beacon Source G4JNT Page 10

Figure 1 Code Generator module, provides frequency data on a three wire synchronous serial interface

LF DDS + WSJT Beacon Source G4JNT Page 11

Figure 2 PIC Based LF DDS. Programmed via three wire synchronous serial interface

LF DDS + WSJT Beacon Source G4JNT Page 12

Figure 5 Output Spectrum at 25kHz

Figure 4 Mirrored 1:1 PCB

Figure 3 PCB Layout for the DDS Frequency
Source

LF DDS + WSJT Beacon Source G4JNT Page 13

Annex 1

Free Running Versions

The PIC Code JT4GEN_freerun_serial , wsprgen_freerun_Serial and

jt65gen_freerun_serial (included in the archive) do not need any external timing

information and use the PIC’s own oscillator to generate the appropriate intervals. All

connections to the PIC are the same as for the standard version, except that ports B0-B2 are

not used. Provisions has been built into the software for use – with care – of crystals of

other frequencies. The timing for both the JT4 sequence and the real time count of

seconds has to be derived by dividing down from a regular interrupt, which itself is generated

by dividing down from the PIC internal clock. Only certain frequencies will meet the

requirements for this,; the seconds count has to be exact, and the JT4 timing has to be

close enough that at the end of the 48 second sequence, the timing has drifted by no more

than a fraction of a symbol.

A spreadsheet WSJT_PIC_Timings.XLS has been included to assist in calculating the

values.

The source code is customised in the same way as for JT4GEN , except that now only the

BOTHMINUTES user flag is available. If crystal frequencies other than 10MHz are to be

used, the divider values have to be changed at the start of the listing. See table A1 for

calculation of these.

To synchronise timing, the module must be powered up or reset as close to the 00 seconds

point as possible. Timing has been arranged so that it launches into code transmission

immediately after power up / reset. When using the alternative minutes option, odd or even

slots are possible depending on the reset point.

The LED flashes red at half symbol rate while sending, and for the CW message; it remains

green during the idle period.

Timing accuracy depends on the PIC oscillator remaining on frequency. Assuming a

reasonable 10 parts-per-million accuracy, this equates to a drift of one second per 100000s

or less than 1s per day. If the frequency drifts low and the clock slows, the resulting

permissible timing for successful decoding using the WSJT software can be up to 6 seconds

late. It is not so forgiving of early timing, and only 1 second fast is permissible. So if you

are unsure of timing drift, or long transmission periods are anticipated, it is safer to start /

reset a few seconds after the minute marker.

For long term usage, a TCXO with 1ppm stability should give acceptable timing for several

weeks or even months of operation

LF DDS + WSJT Beacon Source G4JNT Page 14

TMR0 Programmed value

Table A1 Selecting divider values for arbitrary oscillator frequencies

Choose a crystal frequency and enter this into the box under ‘PIC Oscillator’ in the

WSJT_PIC_Timings spreadsheet. Do not change the values in ‘Prescalar, and ‘Interrupt

Overhead’ (4 and 12 respectively). These cannot be altered in this PIC code.

Check the timings are OK against the mode of choice and “1s timing”. If an unsuitable

crystal frequency is chosen, “X no” will appear in red against the associated entry. If this

happens, choose another crystal frequency, or with care, adjust the “Interrupt Division”

value. Do not use any value less than 100 in here; values from approximately 100 to 240

are acceptable. NOTE a value of 256 is a special case and makes the PIC code run a lot

happier ! In this case it is not necessary to reprogramme TMR0 every interrupt, and the

appropriate lines of code are remmed out. The examples included, with a 19.6608MHz

crystal frequency, use this option.

When a satisfactory set of values are found, note the values generated for “TMR0

Programmed value”, and the “Int Div N” for JT4 and 1s timing. Also the value for

MSDELAY.

Copy these values into the assemble file listing and assemble the code.

How the timing is generated:

The oscillator frequency is divided by 16 (fixed) and clocks the 8 bit TMR0 counter. When

this overflows an interrupt is generated. By pre-loading with a constant, INTDIVIDER each

time it overflows, the resulting interrupt rate can be modified. The Interrupt frequency is

therefore :Fxtal / 16 / (256 – N’) where N’ is the value preloaded each time it overflows.

There is a bit of a snag as some clock cycles are taken up servicing the interrupt before N’ is

loaded, so the value has to be modified. The end result is to generate an interrupt at a

precise rate – shown as the values against “1s timing” See the note above for the case

where the divider is 256

Two separate counters now count each interrupt. The seconds counter is checked against

a value INTSPERSECOND that is numerically equal to the interrupt rate in Hz, or the

“1s Timing” value. When this value is reached it is reset, and the seconds / minutes

updated. All are started off at zero when the PIC is switched on / reset.

The Symbol timing is checked in the same way against a value JTDIVIDER that results in a

rate acceptably close to 4.375Hz to give insignificant symbol overrun at the end of the

LF DDS + WSJT Beacon Source G4JNT Page 15

Annex B Dual Channel DDS with IQ outputs

Figure B1 shows the circuit diagram of a version of the frequency source using the 16F870

PIC. Dual D/A converters and filters generate 90º I/Q channels for application in direct

image cancelling RF Upconversion. The software is contained in the PIC code

SER_IQFreqSource.ASM which has identical functionality to SER_FreqSource.

PORTB forms the 8 bits going to the I channel D/A converter. The additional PORTC goes

to the identical second, Q, channel.

To accommodate additional clock cycles in the interrupt routine for two calls to the sine

lookup table and the additional port write, the sampling rate has had to be reduced to

Fosc/240. So for a 19.6608MHz crystal, Fs still remains an acceptable 81920Hz. At

10MHz input, Fs is now 41666.7Hz; more than satisfactory for audio tone generation.

The cutoff frequency of the output filter is around 10kHz . The filter has also been

configured so that, apart from the lower limit set by the output capacitors (which can be

removed if care is taken with subsequent DC output current capability and voltage offsetting)

otherwise gives a frequency response extending down to true DC. Output amplitude is 3.5V

peak-peak, or just over 1.2V RMS

The 16F870 PIC is in a 28 PIN DIL package, and sits on the 28 rectangular pads with Pin 1

at the top of the diagram shown in Fig B2.

LF DDS + WSJT Beacon Source G4JNT Page 16

Figure B1 Dual Channel I/Q Frequency Source

LF DDS + WSJT Beacon Source G4JNT Page 17

Figure B2 PCB Layout

