
JT9 Coding Process G4JNT Page 1

The JT9 Coding Process (Plain Text messages only)

 Andy Talbot G4JNT March 2016

This note describes my understanding of the JT9 coding process for Plain-Text messages.
The first section of source coding is identical to that used for JT4, up to the end of the
interleaving stage, but all has been repeated here to give a standalone description

The description in the WSJT-X user manual reads:

GENJT9.EXE and its associated source code GENJT9.BAS (32 bit PowerBasic) will
generate a file JT9SYMBS.INC of compressed symbols for direct import into a PIC
microcontroller assembly listing.

Source Coding :

For plain text messages input data can consist only of :

(1) 10 Numbers 0 - 9
(2) 26 Upper case letters A-Z
(3) 6 Punctuation symbols [space] + - . / ?

Giving a total of 42 possible characters.

 A JT9 message consists of up to13 of these characters [char 1] through to [char 13].
So, for example, a callsign and locator can be accommodated eg. ‘ G4JNT IO90IV’
(nb. There is a preceding space in this example) Shorter messages are normally padded
with spaces at the end.

The message is encoded by stepping through the data and generating a value from 0 to 41
for each character in the order they are listed above, ie ‘0’ = 0, ‘9’ = 9, ‘A’ = 10, ‘Z’ = 35, ‘?’
= 41.

Three long integers are now formed as follows :

JT9 is designed for making minimally valid QSOs at LF, MF, and HF. It uses 72-bit structured
messages nearly identical (at the user level) to those in JT65. Error control coding (ECC) uses a
strong convolutional code with constraint length K=32, rate r=1/2, and a zero tail, leading to an
encoded message length of (72+31) × 2 = 206 information-carrying bits.

Modulation is nine-tone frequency-shift keying, 9-FSK. Eight tones are used for data, one for
synchronization. Eight data tones means that three data bits are conveyed by each transmitted
information symbol. Sixteen symbol intervals are devoted to synchronization, so a transmission
requires a total of 206 / 3 + 16 = 85 (rounded up) channel symbols. The sync symbols are those
numbered 1, 2, 5, 10, 16, 23, 33, 35, 51, 52, 55, 60, 66, 73, 83, and 85 in the transmitted
sequence. Each symbol lasts for 6912 sample intervals at 12000 samples per second, or about
0.576 seconds. Tone spacing of the 9-FSK modulation is 12000/6912 = 1.736 Hz, the inverse of
the symbol duration. The total occupied bandwidth is 9 × 1.736 = 15.6 Hz.

JT9 Coding Process G4JNT Page 2

N1 = [char1] N2 = [char6]
N1 = N1 * 42 + [char 2] N2 = N2 * 42 + [char 7]
N1 = N1 * 42 + [char 3] N2 = N2 * 42 + [char 8]
N1 = N1 * 42 + [char 4] N2 = N2 * 42 + [char 9]
N1 = N1 * 42 + [char 5] N2 = N2 * 42 + [char 10]

N3 = [char11]
N3 = N3 * 42 + [char 12]
N3 = N3 * 42 + [char 13]

N1 and N2 have a maximum value of 425 – 1 = 130691231 which fits nicely into a 27 bit
integer (maximum value 134217727). N3 is a 17 bit integer, having a maximum value of
423 = 74087

So a total of 27 + 27 + 17 = 71 bits are needed; A single bit is added as a flag to indicate
the message is plain text and gives a total of 72 bits of source data. The words are
compressed and slightly rearranged into a contiguous 72 bit sequence

N1 = N1 * 2 + [bit 15] of N3 (or N3 \ 32768 MOD 2) (28 bits total)
N2 = N2 * 2 + [bit 16] of N3 (or N3 \ 65536 MOD 2) (28 bits total)
N3 = N3 MOD 32768 + 32768 (16 bits total)

Adding 32768 or setting bit 15 of N3 is the plain text flag

The contiguous 72 bit sequence is made up of N1 * 2(16 + 28) + N2 * 216 + N3
In GENJT9.BAS the data is represented in a string format from this point on.

31 zero bits are added at the end to make a 103 bit sequence for the next stage.

Convolutional Encoding

The data is now expanded to add FEC with a rate ½, constraint length 32, convolutional
encoder.

The 103 bits (including trailing zeros) are read out MSB first:
(using the string representation, one-at-a-time from the left hand end)

The bits are clocked simultaneously into the right hand side, or least significant position, of
two 32 bit shift registers [Reg 0] and [Reg 1]. Each shift register feeds an Exclusive-OR
parity generator from feedback taps described respectively by the 32 bit values
0xF2D05351 and 0xE4613C47. Parity generation starts immediately the first bit appears
in the registers (which must be initially cleared) and continues until the registers are flushed
by the final 31st zero being clocked into them.

Each of the 103 bits shifted in generates a parity bit from each of the generators , a total of
206 bits in all. For each bit shifted in, the resulting two parity bits are taken in turn, in the
order the two feedback tap positions values are given, to give a stream of 206 output bits.

JT9 Coding Process G4JNT Page 3

The parity generation process is :

 Shift the next source bit into the LSB of both [Reg 0] and [Reg 1],

moving the existing data in each one place left
 Take the contents of [Reg 0]

AND with 0xF2D05351
 Calculate the single bit parity (XOR) of the resulting sum.
 Append to the output data stream

Take the contents of [Reg 1]
AND with 0xE4613C47
Calculate the single bit parity (XOR) of the resulting sum.

 Append to the output data stream

The expansion from 72 source data bits to 206 has added sufficient redundancy in an
optimised manner to give a code capable of very strong Forward Error Correction against
random errors.

Interleaving
Errors over a radio link are rarely random , being more likely to occur in bursts against
which this sort of convolutional coding is less effective,. So the final stage of encoding is to
mix up, or interleave. the 206 data bits so as to move adjacent bits away from each other in
time. The result is that close-together bits corrupted by burst interference are spread
throughout the frame and therefore appear as random errors – which the FEC process can
cope with.

The interleaving process is performed by taking the block of 206 starting bits labelled S[0]
to S[205] and using a bit reversal of the address to reorder them, to give a pattern of
destination bits referred to as D[0] to D[205].

This completely shuffles and reorders the 206 bits on a one-to-one basis.

Up to this point, the encoding process is identical to that used for JT4 .

Initialise a counter, P to zero
Take each 8-bit address from 0 to 255, referred to here as I
Bit-reverse I to give a value J.

For example, I = 1 gives J = 128, I = 13 J = 176 etc.

If the resulting bit-reversed J yields a value less than 206 then :

Set Destination bit D[J] = source bit S[P]
Increment P

Stop when P = 206

JT9 Coding Process G4JNT Page 4

Synchronisation Vector

11001000010000010000001000000000
10100000000000000011001000010000
010000001000000000101

Convert to Symbols

Bits are taken three at a time from left to right (in a conventional representation), or in the
order output from the interleaver. A value from 0 to 7 calculated from :

Bit1 * 4 + Bit2 * 3 + Bit3.
(Add a padding ‘0’ onto the end of the 206 input bits to make a multiple of 3).

 The result is an array of 69 numbers, each taking on a value from 0 to 7

Gray Coding

The symbols are mapped onto Gray code. Gray codes are
characterised by having a change of just one bit, or interval, when
moving from one symbol to the next. This minimises error propagation
in the presence of noise or distortion on the signal path. The mapping is
shown in the table.

This can be implemented using the function,
NOUT = NIN XOR (NIN >> 1) [>> = shift right]
or by using a lookup table

Merge With Sync

16 Synchronisation symbols are now inserted amongst the 69 data symbols with a pseudo-
random distribution. This is performed using the sync vector shown in the table below.
This vector is 85 bits (symbols) long representing the final output stream and equates to 69
input symbols plus 16 for sync. The position of each synchronisation symbol is shown as a
‘1’ in the pattern; the ‘0’s reflect the position of the data symbols

Stepping though the 85 symbols from left to
right, if a ‘1’ occurs a sync symbol is
transmitted – this is allocated a value of 0
[zero]. If a ‘0’ occurs in the sync vector, it is
replaced by each of the successive 69 data
symbols from the gray coded sequence PLUS
1, giving an output value for each of the 69
data symbols between 1 and 8.

So now there are 85 output symbols, each taking one of nine values from 0 to 8 .

Input Output

000 000
001 001
010 011
011 010
100 110
101 111
110 101
111 100

JT9 Coding Process G4JNT Page 5

Modulation

Since the later version of WSJT-X, a number of submodes have now appeared, as well as
fast versions of the wider spaced ones. Tone spacing are based on binary multiples of
1.7361Hz (12000 / 6912) Baud rate is equal to this value for the slow modes. The fast
modes are sent at speeds that are not related to this tone spacing value; The tone
spacing and resulting baud rates are defined in the table below

Submode

Tone
Spacing

Fast Mode
Baud rate

A 1.73611 -
B 3.47222 -
C 6.94444 -
D 13.8888 -
E 27.7777 25
F 55.5555 50
G 111.111 100
H 222.222 200

Packing for export and storage

For export, the 85 symbols are packed two to a byte, MSB first, into 43 locations with
appropriate formatting for PIC assembly code.

; JT9 Symbols packed two per byte. Message: G4JNT IO90IV

 de 0x00, 0x13, 0x08, 0x84, 0x10, 0x31, 0x61, 0x40

 de 0x43, 0x47, 0x72, 0x01, 0x54, 0x16, 0x74, 0x47

 de 0x04, 0x03, 0x41, 0x83, 0x68, 0x54, 0x36, 0x86

 de 0x81, 0x00, 0x72, 0x08, 0x67, 0x70, 0x56, 0x77

 de 0x10, 0x61, 0x86, 0x63, 0x04, 0x48, 0x31, 0x52

 de 0x17, 0x07, 0x00

