
Rotary Encoder / LCD Control for LMX2541 and LMX2470 Synthesizer Modules

Andy Talbot G4JNT May 2013

Both of these two FractN synthesizer designs originally started out with a 12F629 PIC based operating

system that allows users to set individual registers with ASCII based commands on an RS232 interface.

PC software allowed register values to be calculated and sent to the controller over this interface, with

the option of storing these in EE memory for immediate loading at switch on. On the LMX2470 this PIC

resides on the PCB with the RS232 interface going to a four-way header. On the LMX2541 board, the

controller has to be

installed externally on a

daughter-board. The

header on the main PCB

carries just the SPI signals

direct to the synth chip.

This design uses a rotary

encoder and LCD module

to allow the synthesizer to

be set to any arbitrary

value using just a

quadrature tuning wheel

and pushbutton. The

hardware for each is

identical, with a 16F628

PIC on a PCB designed to

mount directly onto the 14

pins of a standard

alphanumeric LCD module

as shown in the

photograph. The PCB is

identical to that used for

the AD9850 DDS controller

described at Ref [1].

Only the registers on the synth chip that are directly applicable to frequency setting are programmed.

All others are stored in non volatile EE memory that have to be defined and blown in using a PIC

programmer. Therefore this controller cannot be supplied as a “plug and play” unit. Each will need to

be customised to your own purposes.

Frequency Setting Algorithm

Both versions use a similar technique to set the FractN registers. The synthesizer is set to tune in steps

of 10Hz and this is the basic resolution of the system. The output frequency of a FractN synthesizer is

equal to :

FOUT = FREF / R * (N + F/D) / ODIV (ODIV is the output divider, only applicable to the LMX2541)

Assuming FREF = 10MHz and R=1 for a 10MHz comparison frequency, then to get 10Hz tuning steps at the

basic synthesizer level means the value of D has to be 1000000.

There are two ways of converting between displayed frequency (FOUT) and the values of N and F that

have to be sent to the synthesizer chip. Both are derived by first rearranging the above equation:

 FOUT = FREF / R / D * (N.D + F)

Noting that FREF / R / D is the tuning step, this simplifies to :

FDISP = N.D + F with the display in units of 10Hz.

 Showing the correct frequency is then just a matter of placing the decimal point appropriately in the

display. Step sizes other than 1Hz, 10Hz, 100Hz etc. would need an additional multiplication or

division.

The first method of calculation involves having a counter containing the value of FDISP which is

incremented or decremented by adding or subtracting values corresponding to the tuning step each

time the rotary encoder is operated. A 32 bit counter allows a count up to about 4.3 billion which with

10Hz steps means frequencies up to 43GHz can be catered-for.

F and N are then calculated from : N = INT(FDSISP / D) and F = REMAINDER (FDISP / D)

For the LMX2541 FDISP has to be replaced by [FDISP * ODIV] in the above equation

The second method is to maintain N and F counters, with F incremented or decremented as before.

However, F counts modulo D, so when it reaches a value of 999999, the next step resets F to zero and

increments N. The displayed frequency is then calculated from FDISP = N.D + F. For the LMX2541, a

further division by ODIV is then needed to show the correct final frequency value

Both methods are equally valid and make use of 32 bit integer maths. The second method uses

multiplication, with a simple 8 bit division for the LMX2541 output divider only. The first method uses

32 bit division. As I didn’t have a complete and tested 32 bit division routine in the library, but did

have a suitable multiplication one, the second method was used here. It is also a bit simpler, and

therefore faster in operation.

Each step of the rotary encoder increments or decrements the F / N count. The step size (the value by

which the count is incremented /decremented) can be selected in decimal increments by repeatedly

pressing the pushbutton. The digit being varied is shown by a caret under the associated position in the

LCD (Photo 2, above).

When the output divider [ODIV] is used in the LMX2541, the value used to alter the F/N count has to be

modified so the tuning step is maintained at the final output frequency. Therefore, the step value is

multiplied by the value of ODIV before adding or subtracting it.

LMX2470 Controller

The source code for this is contained in LMX2470_ROT.ASM which is commented sufficiently to be able

to customise it to your own requirements. All the EEPROM contents for the fixed register settings are at

the beginning of the file. For a standard unit with median loop bandwidth and FractN settings, no

changes should be needed to the default values. (The default frequency of 2320.9045MHz will be

changed as soon as you store your own setting)

Select the digit to be set (tuning rate) by repeatedly pressing the pushbutton momentarily. Use the

rotary encoder to adjust at this tuning rate. The current frequency can be stored to non-volatile

memory, to be recalled next time the unit is turned on, by pressing and holding the pushbutton for two

seconds. The display momentarily shows “ –SAVED – “

There are no upper or lower limits programmed into the controller – it up to you to make sure you stay

within the lock range of your specific synthesizer system!

LMX2541 Controller

This is contained in LMX2541_ROT.ASM. This operates similarly to the LMX2470 version, but allows for

the output divider to be set. To change the value of this, press and hold the pushbutton whilst turning

on the unit. The display shows “Change and Store O/P Divider = /XX” where XX is the current value of

ODIV. Use the rotary encoder to cycle the divider value from 1 to 64. When the correct value appears in

the display, press the button briefly to save this to non-volatile memory and return to normal operation.

At the time of writing, there is an annoying issue with high values of ODIV and large tuning steps. A

problem comes when the new increment /decrement value after it has been multiplied by ODIV ends up

PCB layout for SOIC packaged 16F628A PIC devices. The 14 pin

header plugs directly onto the LCD modules available from [3],

with all other connections made via pads or headers.

greater than D. The ideal solution would be to correct this by some complicated division and maths,

but a simpler, more pragmatic solution was chosen. For values of ODIV that could give values greater

than D at certain step sizes, these steps are simply not allowed to happen. It is then only possible to

cycle though valid step values with repeated pushbutton presses. To illustrate this, set a value of ODIV

greater than 9, then try selecting different step sizes. Notice how only values from 10Hz to 100kHz can

now be selected. With ODIV = 20, for example, a 100kHz step needs 20 * 10000 = 200000. A 1MHz step

would need a value of 2000000, which is greater than D) With ODIV values from 1 to 9 tuning steps up

to 1MHz are permitted. (Another boundary at ODIV = 40 is also in place, limiting to 10kHz step maximum.

Although not essential here, it was included because in the future this one might become necessary;

and better to have the code in place than forget about it later!)

This solution is not ideal, and later versions of the software may change completely how the register and

display values are calculated. One version under consideration is to allow seamless tuning from VHF to

maximum and allow ODIV to be determined automatically according to a lookup table based on the chip

version in use, while testing-for and prohibiting illegal frequencies. This will require a major code re-

write – but the same hardware will be used.

Hardware and Construction

The finished unit is shown in the photograph above,

with the circuit diagram in Figure 1. This is

identical to that for the AD9850 DDS controller at

Ref [1]. The PIC code in .ASM and .HEX formats for

both LMX2470 and LMX2541 controllers can be

found at Ref [2]. This archive contains the file

SPI_ROT.pdf which is a 1:1 mirror-imaged

monochrome plot of the PCB for direct laser

printing to acetate or iron-on transfer for

homebrew PCB construction. Suitable four line

LCDs and a limited number of PCBs can be obtained

from G3AAF at ref [3]. Many builders have

reported that a two line LCD works satisfactorily

The PIC can be programmed though the four way

header labelled ‘ICP’. The connections are Gnd,

Data, Clock, Pgm. This programming interface is identical to all other PIC products from the ‘JNT stable

but, unfortunately, no one else’s. So you’ll have to make up a programming lead!

The LED serves no useful purpose in this design and can be left out. It is a hangover from an earlier

project that used this PCB. Additional pin connections on the SPI connector and other unused pads are

also a legacy of backwards compatibility.

The four connections from the controller header, (G, a, b, c) pass directly to the synthesizer PCB on a

four-way ribbon cable. The connections for the synth module programming are defined as:

 a = Data b = Clock c = LoadEnable G = Ground.

Both synthesizer PCBs contain level shifting resistors permitting 5V SPI control signals to be delivered to

the chip at the right voltage levels.

If a +5V rail is used to supply the synthesizer’s own voltage regulator input, this 5V may be picked up on

the 5
th

 pin, labelled ‘+5’, and used to supply the PIC. In this case, leave out the 78L05 voltage regulator.

Rotary Encoder

The circuit diagram shows an optical or otherwise powered encoder. A simple mechanical switch type

works equally well, ignoring any connection to +5V. There is no need for pull-up resistors, the PIC

already has them enabled. However, to avoid contact bounce, two capacitors across the switch

contacts will probably be needed. Use a value in the region 10 – 100nF.

Bypass the LMX2470 on-board controller.

The PIC mounted on the LMX2470

needs to be removed and the pins

jumpered as shown, giving direct

access to the SPI serial control.

Pads linked are: 2 – 4, 3 – 6, 5 – 7

 The LMX2541 PCB already has

direct connection for one-to-one

linking.

References

[1] http://www.g4jnt.com/AD9850-Controller.pdf Controller for AD9850 DDS Modules

[2] http://www.g4jnt.com/LMX2470_2541-Controller.zip Full constructional archive

[3] Kevin@avery03.fsnet.co.uk 4-Line LCD modules

Figure 1, Circuit diagram of the PIC controller. Connections to the LMX2xxx synthesizer module are :

a = Data b = Clock c = LoadEnable G = Ground

