
The WSPR Coding Process

I wanted a simple way of generating the symbols for programming into a WSPR beacon
source consisting of a PIC microcontroller and DDS frequency generator. Whilst Joe,
K1JT, has written a facility into the command-line software, WSPR.EXE, to give a listing
of the symbols, further processing is needed to extract the values into a useable form. I
had written a programme for converting this list to a form suitable for import to PIC
assembler file, but the process was messy and time consuming. (Ref 1) I also felt
uncomfortable not knowing how the data was generated.

The solution was to write my own software to generate the WSPR symbols from first
principles. (As I have an almost paranoid obsession with not using any data mode
before I intimately know its structure and coding, this task would fulfil the necessary
learning requirement…)

Searching the web did not reveal any simple description of the encoding protocol, but did
throw up the original source code for the complete WSJT software (in Fortran and C)
which was too complex to wade through. Also found were a couple of compilations by
other writers, in both Python (Ref 2) and C, for generating the WSPR symbols based on
this original source material.

By studying and modifying the C code (and in the process having to learn and getting to
quite like the C language) I managed to write software that generates a .INC file for direct
importation into PIC microcontroller code of the WSPR symbols for any given source
message. Programmes in both C (derived from the original listing) and Powerbasic
were produced, and checked to ensure they both gave identical results, and agreed with
data generated from the original WSPR.EXE software.

After all that, here is my description, in non language-specific terms, of WSPR encoding
to assist others in understanding the complex encoding process.

Source Coding :

Input data consists of :

(1) Callsign with a maximum of six characters consisting only of A-Z, 0-9 and
[space]

(2) Four digit locator (such as IO90)
(3) Power level representing dBm from 0 to 60.

All letters are converted upper case

Callsign

The third character is forced to be always a number. To cope with callsigns that start
letter followed by a number, a space is appended to the front if necessary. So, for
example, ‘G4JNT’ will become ‘[sp]G4JNT’ whereas GD4JNT stays as-is. Short
callsigns are then further padded out to six characters by appending spaces to the end

The 37 allowed characters are allocated values from 0 to 36 such that ‘0’ – ‘9’ give 0 – 9,
‘A’ to ‘Z’ give 10 to 35 and [space] is given the value 36. Further coding rules on
callsigns mean that the final three characters (of the now padded out callsign) can only
be letters or [sp] so will only take the values 10 – 36. With the characters, designated
[Ch X], taking on values from 0 to 36 as defined, the callsign is now compressed into a
single integer N by successively building up.

Giving an absolute maximum value for N of 37 * 36 * 10 * 27 * 27 * 27 = 262177560
Which is just comfortably less than 228 = 268435456 and means the callsign can be
represented by 28 bits with a range of codes left over for the future, eg. For allocation to
special cases and flags.

Locator

Designating the four locator characters as [Loc 1] to [Loc 4], the first two can each take
on the 18 values ‘A’ to ‘R’ only so are allocated numbers from 0 – 17. The second pair
can take only the values 0 – 9.

Another integer M is formed from:

M1 = (179 - 10 * [Loc 1] - [Loc 3]) * 180 + 10 * [Loc 2] + [Loc 4]

Which gives a range of values from ‘AA00’ = 32220 to ‘RR99’ = 179, which comfortably
fit into a 15 bit representation (215 = 32768), leaving spare codes for further
enhancements.

Power level, [Pwr] is taken as a value from 0 – 60. Although only certain values will work
with the WSJT / WSPR software (just those ending in 0, 3 or 7) any of the possible 61
values will be encoded; Illegal values are labelled when decoded. Power is encoded
into M by :

M = M1 * 128 + [Pwr] + 64 Which gives a final range of values for M up to a maximum
of 4124287, and fits into 22 bits (222 = 4194304)

Bit Packing

The total source data has now been reduced to 50 bits of data; 28 for the callsign in N
with 15 for the locator and 7 for the power in M. A few special cases of coding are
available for future enhancements like text messages, but these are not be covered here.

The two integers N and M are truncated and combined so the 50 bits sit end-to-end as
callsign-locator-power. These are placed into an array of eleven 8-bit bytes c[0] to c[10],
so the first element c[0] contains the most significant 8 bits part of the callsign, c[1] the

N1 = [Ch 1] The first character can take on any of the 37 values including [sp],
N2 = N1 * 36 + [Ch 2] but the second character cannot then be a space so can have 36 values
N3 = N2 * 10 + [Ch 3] The third character must always be a number, so only 10 values are possible.
N4 = 27 * N3 + [Ch 4] – 10]
N5 = 27 * N4 + [Ch 5] – 10] Characters at the end cannot be numbers,
N6 = 27 * N5 + [Ch 6] – 10] so only 27 values are possible.

(In practice N will just be one 32 bit integer variable that can be built up in stages)

next 8 bits and so on. (Note that c[3] contains both the 4 LSBs of the callsign and 4
MSBs of the locator, and that c[6] contains just the two LSBs of M occupying the most
significant bit positions. The lowest six bits of c[6] are set to 0, with the remaining byte-
array elements [c7] to c[10] set to zero. Only the left-most 81 of these 88 total bits are
subsequently used.

An alternative view is to imagine them as an 81 character-long string containing
characters ‘0‘ and ‘1’ only.

Convolutional Encoding

The data is now expanded to add FEC with a rate ½, constraint length 32, convolutional
encoder.

The 81 bits (including the 31 trailing zeros) are read out MSB first in the order:
c[0] MSB… c[0] LSB., c[1] MSB…c[1] LSB ………… c[11]
(or adopting the alternative view, one-at-a-time from the left hand end of the string)

The bits are clocked simultaneously into the right hand side, or least significant position,
of two 32 bit shift registers [Reg 0] and [Reg 1]. Each shift register feeds an Exclusive-
OR parity generator from feedback taps described respectively by the 32 bit values
0xF2D05351 and 0xE4613C47. Parity generation starts immediately the first bit
appears in the registers (which must be initially cleared) and continues until the registers
are flushed by the final 31st zero being clocked into them.

Each of the 81 bits shifted in generates a parity bit from each of the generators , a total of
162 bits in all. For each bit shifted in, the resulting two parity bits are taken in turn, in the
order the two feedback tap positions values are given, to give a stream of 162 output
bits.

The expansion from 50 source data bits to 162 has added sufficient redundancy in an
optimised manner to give a code capable of very strong Forward Error Correction against
random errors.

The parity generation process is :

 Shift the next source bit into the LSB of both [Reg 0] and [Reg 1],

moving the existing data in each one place left
 Take the contents of [Reg 0]

AND with 0xF2D05351
 Calculate the single bit parity (XOR) of the resulting sum.
 Append to the output data stream

Take the contents of [Reg 1]
AND with 0xE4613C47
Calculate the single bit parity (XOR) of the resulting sum.

 Append to the output data stream

Interleaving

Errors over a radio link are rarely random , being more likely to occur in bursts against
which this sort of convolutional coding is less effective,. So the final stage of encoding is
to mix up, or interleave. the 162 data bits so as to move adjacent bits away from each
other in time. The result is that close-together bits corrupted by burst interference are
spread throughout the frame and therefore appear as random errors – which the FEC
process can cope with.

The interleaving process is performed by taking the block of 162 starting bits labelled
S[0] to S[161] and using a bit reversal of the address to reorder them, to give a pattern of
destination bits referred to as D[0] to D[161].

This completely shuffles and reorders the 162 bits on a one-to-one basis.

Merge With Sync Vector

The 162 bits of data are now merged with 162 bits of a pseudo random synchronisation
word having good auto-correlation properties. Each source bit is combined with a sync
bit taken in turn from the table below to give a four-state symbol value:

 Symbol[n] = Sync[n] + 2 * Data[n]

Resulting in 162 sequential symbols each with a value from 0 to 3

Modulation

Each symbol represents a frequency shift of 12000 / 8192, or approximately 1.46Hz, per
Symbol Value giving four-level Multi-FSK modulation. The transmitted symbol length is
the reciprocal of the tone spacing, or approximately 0.683 seconds, so the complete

162 bit Synchronisation Vector
1,1,0,0,0,0,0,0,1,0,0,0,1,1,1,0,0,0,1,0,0,1,0,1,1,1,1,0,0,0,0,0,0,0,1,0,0,1,0,1,0,0
0,0,0,0,1,0,1,1,0,0,1,1,0,1,0,0,0,1,1,0,1,0,0,0,0,1,1,0,1,0,1,0,1,0,1,0,0,1,0,0,1,0
1,1,0,0,0,1,1,0,1,0,1,0,0,0,1,0,0,0,0,0,1,0,0,1,0,0,1,1,1,0,1,1,0,0,1,1,0,1,0,0,0,1
1,1,0,0,0,0,0,1,0,1,0,0,1,1,0,0,0,0,0,0,0,1,1,0,1,0,1,1,0,0,0,1,1,0.0,0

Initialise a counter, P to zero
Take each 8-bit address from 0 to 255, referred to here as I
Bit-reverse I to give a value J.
For example, I = 1 gives J = 128, I = 13 J = 176 etc.

If the resulting bit-reversed J yields a value less than 162 then :

Set Destination bit D[J] = source bit S[P]
Increment P

Stop when P = 162

message of 162 symbols takes around 110.6 seconds to send and occupies a bandwidth
of approximately 6Hz,

Packing for export and storage

For export, the 162 two-bit symbols are packed four to a byte, MSB first, into 41
locations.

Andy Talbot G4JNT June 2009

Ref 1 http://www.g4jnt.com/beacons.htm

http://www.g4jnt.com/WSPRBCNS.ZIP

Ref 2 http://brainwagon.com/files/genwspr

