
Controlling the Bridgewave Communications type

Microwave Synthesizers

Andy Talbot G4JNT July 2009

At the RAL Roundtable, Paul M0EYT handed

my a flat grey module Photo 1, said it was a

12GHz synthesizer, and “could I do anything

with it”

On opening up, the module was found to

contain a synthesizer based around an

LMX2326 chip and a Zcom CLV1525E VCO,

followed by a conventional times 8 multiplier

chain and splitter for two 12GHz outputs.

Several internal regulator chips are 5V output

devices, and the DC power input was stated

by Paul as being +8V.

Photo 1 - The Bridgewave Communications

12GHz Synthesizer Module

There was no inbuilt micro or any logic for control, and the three Microwire programming pins

from the synthesizer chip were brought to the outside world on a 10 way connector.

Connections for this were traced out and are shown in Figure 1 :

Figure 1 Bridgewave Communications Synthesizer interface

There is no internal reference source for the PLL and this has to be supplied externally Pin 4 for

supplying the reference input has a track leading to pads for a PCB mounted coax connector

adjacent to the 10 way connector so an SMC socket was installed here for convenience as shown

in Photo 1. Applying +8V power (350mA drawn) resulted in an unlocked 12GHz signal

appearing on the two output SMA connectors. So all appeared to be working.

Test Not GND Ref GND Clk Data Load +Vin Not

O/P used In -- Programming -- 8V used

▄ ▄ ▄ ▄ ▄ ▄ ▄ ▄ ▄ ▄

Programming.

I already had a PIC utility for controlling LMX1501 devices from a serial RS232 interface. See

http://www.g4jnt.com/synthblb.asm This was built around the tiny 8 pin PIC 12F629 . The firmware

was modified to send the commands in the format needed by the LMX2326 which wants 21 bit

words consisting of 19 bits of Data for each of the Reference and N divider values plus the

Function or control register, and two address bits to define the register being programmed.

The connections for the interface are shown in Figure 2. The four pin connector serves a dual

purpose. It serves as the in-circuit programmer for the PIC and also as a direct interface to a

serial or RS232 port (with an additional resistor). This allows a simple external interface for

routine programming of frequency and setup information, as well as being able to update the PIC

code as the need arises. The serial control allows values to be programmed into non volatile

memory so it will boot up with the correct frequency at turn-on.

Figure 2 PIC Controller Interface for LMX Synthesizer chips

Synth Control

Close examination of the LMX23x6 data sheet available from

http://www.national.com/mpf/LM/LMX2326.html gave the minimum requirements for the Function

register – the only bit that actually mattered to the PLL operation was the VCO polarity bit

which has to be set to 1 for positive tuning direction. All other bits can be zero. There is a

convenient test-pin on the LMX2326 Pin 14, Fo/LD, which outputs one of several internal

signals from the PLL depending on Function register programming. This is brought out to Pin 1

of the external interface and for initial testing was programmed to give the divided-down N

divider output. When looked-at on a scope the waveform should consist of reference spikes at

the comparison frequency and will show whether there is any PLL instability, or if it is even

locked!

I used a 10MHz reference input and initially guessed the PLL might be set up for a comparison

frequency in the region of 200kHz. So programmed in values of R = 0x32 (decimal 50 for the

hexadecimal-challenged ☺) and N = 0x1DC9 - (go on work it out) for the middle of the

VCO’s specified range. The spectrum analyser showed a nice clean signal at 12GHz. Then a

brainwave struck; a comparison frequency of 125kHz results in 1MHz steps at the output, and

N = output Frequency in MHz . (R = 0x50 and N = 0x2EF8 gives 12024MHz = 24048 / 2)

Although the VCO is only specified for 1500 – 1550MHz it locked happily down to at least

1450MHz which is good! This gives 11600MHz output, and when used as an LO for 24GHz, is

23200MHz, meaning that for a 24048 receiver it will allow any IF below 800MHz. It may even

go lower, but I suspect 11376MHz for a 23cm IF is a bit too much.

Shoehorning it in

As there is plenty of space on the Synthesizer’s PCB, it was decided to mount the PIC inside the

case and apply the serial programming to pins on the existing 10 way connector. There are not

enough spare pins for a complete interface as three are needed if PIC device programming is to

be available as well as the RS232 interface. Fortunately, the LMX programming pins have

zero-ohm links in their tracks to the 10-way connector so these were removed and the three

external programming pins now became my interface.

The 8 pin PIC was glued onto the PCB adjacent to the nearest ground track I could find that

wouldn’t have part of the upper casing lying on top of it when assembled. Refer to Photo 2. A

dab of superglue was used to firmly fix the chip in place which was installed the right way up

with the pins lifted to clear. I’ve had unpleasent experiences with wrong pin connections and

blown chips using upside-down dead-bug construction - perhaps this ought to be called live bug

construction. The location shown is not the neatest place for it, but was the only place I could

find where a direct connection to ground was available and resulted in six relatively long signal

links going to the pads of the now-removed zero ohm links. Note the 100nF decoupling cap on

the Vdd pin, also connected directly to ground. All totally OTT, and a much nicer job could

have been made by installing the chip straddling the three signal lines, resulting in six short

signal links and two longer PSU / ground ones. If the decoupling cap was connected directly

across the PIC pins 1 and 8 it would still have been more than adequate.

The PIC Code as well as copies of the figures can be found at http://g4jnt.com/Bridgewave.zip

Photo 2 The PIC interface mounted onto the Synthesizer PCB (in a non-optimum position)

Serial Interface Programming Instructions

Commands are sent to the Synth Controller with ASCII commands. All commands must be

terminated with a Carriage Return , shown as [cr]

In the exmples below, data you type is shown underlined such as N12345[cr] and responses

from the controller shown in italic N – 12345 . Upper or lower case letters are accepted and

typed characters are not echoed back

Do not put any extraneous spaces into commands – in the examples below a space is shown

before the [cr] purely for clarity. If a command has the wrong syntax, no response will be

received from the controller.

Make up an interface lead with a 9 Way D Female connector and 4k7 resistor as shown in Figure

2, and connect to your computer’s COM port. Run Hyperterminal, or ant similar serial driver

programme with the parameters set to 1200 Baud, 8 Bit data, No parity, 2 stop bits and no

handshaking : 1200 N81

Connect the interface and turn on the synthesizer.

A display similar to that shown should appear and

shows the values stored in non-volatile memory

with a brief description of the command protocol to

change them.

The three registers are updated by entering the letter R, N or F followed by four or five

hexadecimal characters then [cr]. T o set a new value of N, work out the value needed for the

programmable divider, convert to a five digit hexadecimal number and type, for example

N02EB1 [cr] If the data has been accepted the controller will respond with N-02EB1

Do the same for R if desired, but note that this only takes a four digit value, for example

R0050 [cr] will respond with R-0050

Unless you really need to, and have studied the data sheet, leave the F value alone.

The values are not immediately written to the synthesizer, so all R, N and F

can be set and all sent together. When all three have been succesfully

entered, press U [cr] to send these values to the LMX2326 chip.

If everything is OK, the frequency will jump to its new correct value and the

controller will respond with :

Pressing W [cr] instead causes the values to be written to non-volatile

memory as well as updating the device, and will be loaded next time the unit

is turned on.

The response in this case is :

Note that as it stands, there is no scope for setting the LD Precision bit – the MSB of the R

register - via the serial interface. If you need to set this it will have to be changed in the PIC

firmware.

LMX23x6 Control G4JNT
Commands:
Rxxxx
Nxxxxx
Fxxxxx
[U]pdate
[W]rite EE

R 0050
N 02EB0
F 00030

R 0050
N 02EB1
F 00030
Updated

R 0050
N 02EB1
F 00030
Written

