
Beacon Timestamp 1

Beacon Timestamp

Andy Talbot G4JNT November 2006, Updated Dec 2013

A proposal allowing automatic QSL information to be appended to beacon transmissions.

With the new generation of beacons coming on stream that make use of GPS or similar timing to control
their transmissions, it is now possible to add a timestamp to the transmission that appears random to the
casual listener, but can allow independent verification of the beacon’s reception at any given point in time,
allowing an automatic QSL to be generated. The timestamp appears as a group of letters appended to
the beacon ident (usually be sent in CW), and is generated from the date and time information delivered
from the GPS receiver, changing each minute. If a listener logs the received timestamp with the date
and time of its reception the beacon keeper, or any other authorised person who knows how the
timestamp was generated, can check the authenticity of the report by calculating the timestamp that
should have been sent for the actual date/time of the logged report and comparing with that actually
heard.

The timestamp consists of three letters, called a triad here, formed of a consonant-vowel-consonant
combination. This combination leads to a ‘pseudo-word’ that in most cases will be pronounceable and
makes the logging process a little bit easier. To prevent the international distress message SOS from
ever appearing, the letter S is excluded from the set of letters used. Also, Q has been left out to prevent
any confusion with Q codes, and because words with Q’s in them are not very easy to pronounce! Y
has been assumed to be a vowel.

For this scheme to work properly, it must be impossible for any listener to be able to predict, in advance,
what code will be sent for any future particular date/time combination, even if many (or all) past
combinations are known. Also, the authorised checkers must be able to predict in advance all codes that
will be sent. Where several beacons employ this scheme, each must produce a different sequence of
triads to prevent the transmission from one beacon being used to falsely authenticate that from any other.
Authorised checkers for any one particular beacon transmission, who will know their own codes in
advance, must not be able to predict those for any other transmission from any other beacons outside
their authority.

The consonant-vowel-consonant structure (without Q and S) leads to a maximum of 18 * 6 * 18 = 1944
different three letter combinations, so triads are likely to repeated from time to time – especially as 60 *
24 = 1440 different codes will be sent each day. However, repeatability of any particular triad will appear
to be completely random and if there are any repeats of pairs (or more) of triads, this should only ever
occur only as frequently as the laws of probability allow. The simple nature of the transmitted code does
not detract from the overall security of this time stamping scheme

Timestamp Generation

A process is needed to generate a different sequence of apparently random timestamps for each
transmitter, but to keep a common algorithm / software package for ease of implementation and can be
replicated by the authorised person. The solution is to use a key-based approach where a fixed binary
key is chosen for each transmitter. The key is then mixed with the time/date information every minute,
then shuffled and compressed to generate the three-letter timestamp code. The key is different for each
transmitter, is known only by the authorised person and is stored in non-volatile memory as part of the
beacon keyer software.

It must be possible to generate the timestamp in a simple microcontroller such as a PIC, from the GPS
receiver output supplied via the NMEA data or similar, so the algorithm must work with single bytes at a
time. The timestamp algorithm must be widely published and the security of the scheme must not
depend in any way on the algorithm itself, but only on the key. (See Ref 1)

The key length has to be long enough that anyone with programming skills cannot guess, or be able to
derive it from past information.

Beacon Timestamp 2

Algorithm Description

Generate a 64 bit key which is unique for each beacon and/or site; there should be no weak keys and,
for example 0x00000000 should give results apparently as random and any other value.

Split this into eight key bytes K(0) – K(7)

Each minute, read the time and date and compress into four (Plaintext) bytes P(0) – P(3) as follows :

P(0) = Minute (000mmmmm)
P(1) = Hour (0000HHHH)
P(2) = Day + 32 * (Month MOD 8) (MMMDDDDD)
P(3) = Month \ 8 + 2 * (Year MOD 128) (YYYYYYYM)

(alternatively, using C-like terminology)
P(2) = ((Month << 5) AND 0xE0) + Day
P(3) = ((Year << 1) AND 0xFE + ((Month >>3) AND 1)

Use the full 4 digit Year, eg 2006.

Initialise two working registers with X0 = 0x2B, X1 = 0x89

Generate the encrypted time stamp by passing through the algorithm shown in Figure 1, eight times. X0
and X1 inputs for each pass are the results X0’ and X1’ from the previous one. Eight passes through
the algorithm are enough to spread out a single data bit over all 16 bits of the final word. The indices for
K(i) and P(i) are repeatedly cycled from 0 to 3 and 0 – 7, respectively, for each pass. Note that the
instructions labelled << are byte rotations which preserve all bits present, they are not shifts that would
lose any bits shifted out.

From X0’ / X1’ generated after the final pass, form three pointers into two lookup tables:

C1 = X0’ AND 0x1F (0 – 31)
C2 = (X0’ AND 0xE0) \ 32 (0 – 7)
C3 = (X1’ AND 0x7C) \ 4 (0 – 31)

Use a lookup table containing 32 consonant and 8 vowel options. Letters are repeated to extend the
tables to binary lengths.

CONSONANT_TABLE = “BCDFGHJKLMNPRTVWXZBCDFGHJLMNPRTW”
VOWEL_TABLE = "AEIOUYAE"

The triad is them formed from:
 CONSONANT_TABLE(C1) & VOWEL_TABLE(C2) & CONSONANT_TABLE(C3)

This algorithm can be programmed into the 16Fxxx family of PICs using less than 100 words of
assembler for the hashing code, and executes in around 340 clock cycles. Annex A shows the PIC
16Fxx assembly code.

Beacon Timestamp 3

`

Security of the Algorithm

The process of mixing the plaintext data (the date/time) with the key data to generate an unknown hash
(the timestamp) has been borrowed very loosely from standard cryptographic techniques, particularly
those used in DES and TEA (Ref 1). Originally a 16 bit key was chosen for simplicity, until James Miller
G3RUH pointed out that any hacker could easily try all 65536 combinations of possible key against just a
few known date/time/triad combinations until a match is found, revealing the key which would allow all
future triads to be predicted. This process would take a few milli-seconds at most on a modern PC.

A revised algorithm with a 32 bit key was written, and sent to James for evaluation. By writing
customised cracker software for running on a 233MHz ARM based computer, he was able to derive the
32 bit key for any four date/time/triad combinations in approximately ten minutes by cycling through all
possible codes. A routine written in machine code for a 2.4GHz PC ought to be able to manage it in less
than a minute. Hence the adoption of a 64 bit key here which extends the time taken to crack to a few
thousand years, even if PCs do get seriously faster in the near future!

I have no idea at all if the algorithm itself has any weaknesses in it that reduce the effective code length –
perhaps someone out there with a background in cryptanalysis can work out any potential faults!

<< 3

+

X0 X1

>>2

K(i) i = 0 to 7

P(i) i = 0 to 3

+

X1’X0’

+

<< N

Data

EXCLUSIVE OR (XOR)

ADDITION Modulo 256

ROTATE LEFT (RIGHT) by N

Single BYTE of DATA

Figure 1 – One iteration of the Timestamp Hash Algorithm.

Beacon Timestamp 4

Encryption in Amateur Radio

The amateur licence, enshrined in BR68, specifically states that messages must not be in secret code or
cipher, ie. encryption is not permitted for any amateur transmissions. It is important to note here that the
technique described is not encryption, in the sense that the contents of the transmission are not
concealed – in fact the contents of the timestamp are known exactly; they are a compressed version of
the current date and time. The algorithm is open to all to see and it is only the process of getting there
(the key) that remains known only to the authorised keepers. The content of any transmission is known
at any time.

In fact, the process described is not encryption at all, it is a form of hash generation (See Ref 1 for more
details of Hashing). True encryption would require that it be possible to reverse the process and
regenerate the plain text (the full date and time) from the three letter timestamp. Theoretically it may be
possible, having a run of several timestamps and knowing the key, to be able to recover the time/date
when they were formed. I haven’t the faintest idea how to start doing that, other, perhaps, than by a
brute force attack trying multiple keys until something works.

Support Software (Ref 2)

Two old DOS based PC utilities support the use of this timestamp process. Both run in a Command
Prompt.

TIMECODE.EXE takes the 64 bit key as input, with the date , and generates a file named
TIMECODE.TXT containing all timestamps for each minute of that particular day. The key may be
entered either as Hex characters, or via the password generating process used in the next utility. The
programme also allows individual timestamps to be generated for any particular time subsequently
entered from the keyboard.

MAKEKEY.EXE generates a 64 bit key from a more easily remembered password. This also employs
a hashing technique but the details are beyond the scope of this note. It can be found by looking at the
source code (16 bit Power Basic) supplied for both utilities.

Latest Version of Support Software, December 2013

From December 2013, Both of the two Command line DOS type utilities have been replaced with a
Windows programme called TimeCodeHash.exe

Start the programme and the date and
time fields will be updated with the
current values. Enter an easily
remembered passphrase into the top
left window. As the Passphrase is
entered, the hex string shown in the
top right window will show the
generated Key data.

Alternatively, the Hex string can be
entered directly into the top right
window

In both cases he hex data will be
copied in the window below in a form
that can be copied and pasted directly
into a PIC assembler file; this window
cannot be edited.

Beacon Timestamp 5

When the key data has been generated, press Enter or click on any of the three buttons at the bottom of
the screen, which will now lock the Key from any further updating. Checking the Hide Key box removes
the Key and password from casual view

Show This, Generates the timestamp
corresponding to the date and time
shown in their respective windows.
These windows may be edited to
generate timestamps for future or past
events.

Set Now Reads the date and time
once from the PC’s internal clock

Day Listing. Opens up a Notepad
text editor screen containing all the
timestamps, at one minute intervals,
for the given date. These are stored
in the file TIMECODE.TXT, in the
same directory the programme is run
from.

By Setting the Real Time checkbox,
the timestamp is automatically updated in real time, and no manual entry is possible

The Back Calculation button opens up another package called BackTimecode.exe which must be
stored in the same directory as TimeCodeHash. This allows date / time epochs for a given timestamp to
be searched. Enter a password or hex key data in the appropriate boxes as for TimeCodeHash then the
Year and Start / End months to search over. Enter the Three letter timestamp hash then click Search

The right hand window will be filled with all valid date / time combinations that generate the specified
timestamp for that Key

Ref 1 Applied Cryptography: Protocols, Algorithms, and Source Code in C.
Bruce Schneier. Second edition, 1996. Published by John Wiley and Sons

Ref 2 All Files can be found at http://www.g4jnt.com/BCTMSTMP.ZIP
PIC code can be supplied on request

Beacon Timestamp 6

Annex A

PIC 16Fxxx Assembler Routines for generating the Timestamp Hash

;--------------------------
CompressTime ;Takes Year, Month, Day, Hours, Minutes bytes. nb. Year is the low
 movf Minutes, w ; byte only of the full 4 digit year expressed as a 16 bit integer.
 movwf P0 ;Generates compressed date/time in P0 – P3
 movf Hours, w
 movwf P1

 rlf Month, w ;
 movwf P2 ;Month * 2
 rlf P2 ;
 rlf P2 ;
 rlf P2 ;P2 = Month * 16
 rlf P2, w ;W = Month * 32 but loses MSB
 andlw 0xE0 ;W = (Month MOD 8) * 32
 addwf Day, w
 movwf P2

 bcf STATUS, C
 rlf Year, w ;W = 2*(Year MOD 128) Loses MS Bit of the low byte.
 movwf P3
 btfsc Month, 3 ;Month \ 8
 incf P3 ;P3 = Year mod 128 + Month \ 8
 return

;---
Hash ;Takes 4 bytes of Plaintext P3/2/1/0, and 8 byte Key in EEProm at address KeyData
 ; P must be stored in increasing memory P0,P1,P2 etc as it is addressed indirectly
 ;Generates pronounceable triad in C1/2/3. Uses X0/1

 movlw HIGH(Vowel) ;Segment where consonant & vowel tables are stored
 movwf PCLATH

 movlw 0x2B ;Seed values
 movwf X0
 movlw 0x89
 movwf X1
 clrf Counter
HashLoop
 movf Counter, w
 andlw 0x07 ;64 bit key,
 sublw 7 ;W = 7 - W. Converts count from 0-7 to 7-0,
 ; backwards for Big-Endian readability of data in EE
 addlw LOW(KeyData) ;Point to start of Key data in EE
 call GetEE ;Return with data in W
 xorwf X1

 movlw P0 ;Address of beginning of Input data
 movwf FSR
 movf Counter, w
 andlw 0x03
 addwf FSR ;Point to P0 - P3 as required
 movf INDF, w
 addwf X1

 rlf X1, w ; 3 bit rotate, has to use pairs of RLF’s coz of the carry
 rlf X1 ; - very annoying!
 rlf X1, w
 rlf X1
 rlf X1, w
 rlf X1

 movf X0, w
 movwf Temp

 rrf Temp, w ;2 bit rotate
 rrf Temp
 rrf Temp, w
 rrf Temp, w

 addwf X1, w
 movwf Temp

 movf X0, w
 movwf X1
 movf Temp, w
 movwf X0

 incf Counter
 movlw 8
 subwf Counter, w
 btfss STATUS, Z
 goto HashLoop

Beacon Timestamp 7

 ; ----------- Now generate the pronounceable triad ------------
 movf X0, w
 call ConsonantTable ;Truncation to 5 bits is done later.
 movwf C1

 movf X0, w
 movwf Temp
 rrf Temp
 rrf Temp
 rrf Temp
 rrf Temp
 rrf Temp, w
 call VowelTable
 movwf C2

 movf X1, w
 movwf Temp
 rrf Temp
 rrf Temp, w
 call ConsonantTable
 movwf C3

 return ;ASCII values stored in C1 C2 C3
;----------------------------------
;Ensure both are in the same segment
VowelTable
 andlw 0x07
 addwf PCL
 dt "AEIOUYAE"

ConsonantTable
 andlw 0X1F
 addwf PCL
 dt "BCDFGHJKLMNPRTVWXZBCDFGHJLMNPRTW"

;---

