Software Control

Control is via a bidirectional RS232 link with no handshaking. Parameters are 19200 baud, 8 data, No parity, 1 stop bit.

Commands are sent using ASCII / Hex characters, so that a simple terminal programme such as HYPERTRM or PROCOMM can be used to command the frequency source. Set this to 19200 N81, Full duplex, no flow control and all start up / modem commands set to null. Carriage return / linefeed pairs are returned, but where needed, a single [cr] is all that is required for commands.

Alternatively, custom software can be written to drive the COM port with the commands.

In all the following command descriptions , [cr] carriage return is the hex character $0D, decimal 13, and [lf] linefeed is hex $0A, decimal 10.

The first character sent is a Board Address which precedes all commands. This is a single Hex character sent as ASCII 0 – F and potentially allows up to 16 modules to be driven from the same COM port.

The next character is a command which may have hex data following it.

Q
Followed by eight hex digits for the frequency command word terminated by a carriage return

P
Followed by two hex digits for phase word and [cr]

U
Writes the data sent above to the AD9850 DDS chip

T
Writes the data to the AD9850 after the next 0/1 transition on the external trigger input

W
As for U, but also stores the data in the PIC’s non-volatile EEPROM memory for switch on next time.

Y
Followed by one Hex digit, changes the board address and stores in EEPROM. No [cr] needed

K
Followed by 10 hex digits & [cr].

(In practice read as decimal number for user data, typically clockfrequency)

R
Readback current data values – not necessarily those in EEPROM
L
Followed by 1 or 0 sets the X6 Clock multiplier PLL ON (1) or OFF (0)
No echoing is provided of typed characters, the simple UART implemented in the PIC would run into trouble if commands were sent too fast, see below for control limitations.

The 32 bit or 8 hexadecimal character, value N required for frequency settign can be derived from :

N
=
Fout / Fclock * 232
Phase can be set to any one of 32 values in increments of 11.25 degrees. These form the five highest significant bits of the phase word Pxx. The lowest three bits are ignored.

The following codes are sent back from the board to the terminal / software :

At switch on, the startup string : 9850 DDS Controller Addr. * [cr] [lf]
Is returned. (* is the board address) followed by the default data stored in EEPROM in the format:

Q xxxxxxxx Pxx [cr][lf].

This data is loaded into the AD9850 for automatic power on startup. Finally the user K data is sent back in the format Kxxxxxxxxxx[cr][lf]

After the address byte, a single character , Z , is returned to acknowledge correct addressing, followed by [cr][lf]
After the [cr] terminating Q or P hex data , the complete data is echoed back in the form :

Q xxxxxxx Pxx [cr][lf] Note that at this stage the data has not yet been programmed into the synthesizer
Data shifts in from right to left, LSB to MSB, so if more than eight bytes are sent, the last 8 form the frequency data, (or last 2 for phase data, last 10 for K data). If less than the required number, the data is right justified.

For address changes, the complete start up string is returned with the new address appended.

If the X4 / X1 input select is toggled, the relevant state is returned in the form X1[cr][lf] or X4[cr][lf]
Example commands, assuming a conventional ASCII terminal and Board Address 5 :-

Characters sent, or action

Echoed Back

Function

(Switch on)

9850 DDS Controller Addr. 5 [cr] [lf]
(sign on message and

Q xxxxxxxx Pxx [cr][lf]

 stored default data)

K xxxxxxxxxx[cr][lf]

5

Z[cr][lf]

Q54FB1200[cr]

Q 54FB1200 Pxx [cr][lf]

(frequency data setup, but not sent)

5

Z[cr][lf]

P45[cr]

Q 54FB1200 P45 [cr][lf]

(phase data setup but not sent)

5

Z[cr][lf]

U

 Q 54FB1200 P45 [cr][lf]

(programmed into DDS)

5

Z[cr][lf]

Y6

9850 DDS Controller Addr. 6 [cr] [lf]
 (change and save address)

6

Z[cr][lf]

(note that the address has now changed)

W

Q 54FB1200 P45 [cr][lf]

(write current data to EEPROM)

6

Z[cr][lf]

Kxxxxxxxxxx[cr]

K xxxxxxxxxx[cr][lf]

(saves user data into EEPROM)

6
Z[[cr][lf]

(readback all current data)

R

K xxxxxxxxxx[cr][lf]

Q 54FB1200 P45 [cr][lf]

Addr. 6 [cr] [lf]

6 Z[cr][lf]

T

 (no immediate response, software appears to ‘hang’)

(0/1 on Ext Trig input)
T[cr][lf]

(T returned after freq / phase has been updated)

(X4 Input = 0)

X4[cr][lf]

(X4 control pin set)

(X4 Input = 1)

X1[cr][lf]

Command Timing

Due to the simple way the serial interface, or UART, is implemented in the controller PIC, it is not possible to send a command whilst any characters are being echoed back. This is not a problem when using manual control from a terminal programme, as natural typing delays are more than adequate to allow the completion of all data returned.

Problems can arise however, in software designed to control the board in real time. The following guidelines must be adhered to in writing software to control the module : (timings are worst case and rounded to the nearest millisecond higher)

After switch on wait for the initial startup delay of 300ms, and for the complete 58 character startup message to be returned.

After the address is sent, wait 2ms for the Z to be returned. No Z means the address was wrong or the serial link is not operational.

The Qxxxxxxxx[cr] string can be sent contiguously as no echoing is performed. After the final [cr] wait for the returned data string which is 18 characters and will take 11ms.

5
wait 2ms for Z

Pxx[cr] command, as for Q…

5
…………

U
wait 11ms ………….

5

R
wait 22ms

Ideally the returned string would be parsed and checked for validity, but this is not essential once any driver software has been debugged, provided the minimum wait times above are adhered to. Checking for the Z only, allows command acceptance to be confirmed. Note the locations of spaces in the returned strings. The easiest way to get an exact picture is to test with a conventional terminal programme and see the exact format returned.

After the “T” command, there is a delay of 3 pic clock cycles from the external trigger input to the DDS chip being updated. This corresponds to 3us delay or 2.4us for the 5MHz clock software.

MANUAL UPDATING

Instead of issuing the U command to write data previously sent to the DDS, toggling of the X1/X4 input will also update the chip; either a high or low going transition will work. There is a fixed delay of approximately 17ms after the transition before the command is sent. This was not an intentional part of the software, but is an incidental function of using the Port B change on interrupt to monitor this pin.

EEPROM Data

The PIC stores start up data, user data and the board address in its internal EEPROM registers. User data is stored in locations $00 to $04, the frequency word is stored in registers $05 to $08, the phase data in $09 and the board address in $0A. When blowing the firmware into a chip, it may be worth setting these to initial known values, particularly the chip address value.

Five bytes of hex user data can be stored. For easy readability, It is suggested that this consists of the clock frequency in Hz stored in ‘packed BCD’ format so it is read out as hex data, although consisting of decimal digits. The hex D character can be used as a decimal point. For example, a clock of 101.234569 MHz would be represented by the hex data $10 $12 $34 $56 $7D which would be read out as 101234567D or 101234567 Hz. A clock of 4.99999983MHz would be represented by 49 99 99 9D 83

