AD9850 Direct Digital Synthesizer module
 (RadCom Nov 2000)
A C Talbot G4JNT August 2000

This module is a signal source based on the Analog Devices AD9850 Direct Digital Synthesizer chip. The device will accept a 0-5V logic level signal clock of up to 120 MHz and produce an output frequency up to around 35% to 40% of this value with a resolution of 1 part in 232 of the clock rate. Full details of Direct Digital Synthesis or functioning of the AD9850 chip are not given here, and the data sheet available from Analog Devices should be consulted for further details. This module is designed to work with any valid clock rate up to the maximum allowed by the chip, the only components that need to be varied from those shown in the circuit diagram to suit a change in clock frequency are those in the output filter. Values listed below are suitable for a clock frequency of 100 MHz, for any other clock simply scale the values appropriately. The RF output sinewave is 0.35V RMS (1V pk-pk) from a source impedance of 100 ohms.

An on board PIC microcontroller provides a convenient-to-use interface from a serial port of a PC or similar using plain text commands. This in turn decodes the commands and formats the data into the serial stream required by the AD9850 chip. The command protcol adopted is not the fastest scheme that could be employed - a frequency change takes at least 24ms - but there is scope for comprehensive error checking with the bidirectional data link, as well as the ability to control the DDS from any available ASCII serial terminal.

As well as the normal CW output, a times four frequency option is provided where the actual frequency produced is 4 times that requested by the command data. This is to enable a quadrature divider to be driven from the logic level output, and give its output at the wanted frequency. This function can be activated by grounding the B7 input to the PIC and is primarily intended for when the DDS module is used as the local oscillator for a zero IF based receiver / transmitter with I/Q LO drive. No error checking on data validity is performed, and when in *4 mode the requested frequency can only have a value up to 40% / 4 of the clock, ie. no higher than a tenth of Fc

This latest version of the firmware includes an additional command to allow frequency and phase updates to be syncronised with an external input – for example timing pulses generated from a GPS receiver.

As a convenience for any custom software that may be used with several modules, the clock frequency (or any other data in numeric or hex format) can be stored in 5 bytes of the PIC EEPROM memory and read out at any time. The data is not used internally for DDS control so the format is left entirely to the user; one suggested format for storing clock frequency is given at the end.

Two versions of the PIC firmware are available. DDSPC4 requires the PIC to have a 4MHz crystal or ceramic resonator, usually independent of the DDS clock. DDSPC4F is designed for a PIC clock of 5MHz, in particular for LF use where a standard frequency source of this value can be employed for both DDS and PIC clock generation. The PIC can then conveniently be used to buffer a low level 5MHz signal to give the 0 – 5V waveform wanted by the AD9850 . The PIC clock only significantly affects the communication baud rate, and by changing to a value of 8MHz (or 10 MHz with DDSPC4F), the rate will then become 38400 baud allowing commands to be sent at twice the speed; this has not been tested.

Also not yet tested, the AD9851 DDS chip is pin compatible and includes an on chip X6 clock multiplier allowing higher output frequencies. Minor changes to the PIC software to enable / diasable the multiplier should allow this device to be used instead. See the device data sheet available from WWW.ANALOG.COM
PCB Construction

Surface mount construction and components are used throughout, with the exception of the PIC microcontroller and 5V regulator and possibly the filter components. The PIC is mounted in a socket to allow rapid changes of firmware. Larger size surface mount components are employed to allow easier home construction, the PCB pads allow the use of 1206 or 0805 devices rather than the really tiny SMT components becoming available now.

There is one wire link that needs to be installed on the board. This is the input to the internal comparator, Pin 16, on the AD9850 that is used to generate a square wave output from the filtered sine wave. If this function is wanted, connect a thin insulated wire from the pad adjacent to pin 16 to the RF output pad. If the square wave output is not needed then pin 16 should be grounded to the adjacent ground plane connection to prevent the pin floating.

Interconnections

The two RS232 control lines are configured as follows. Tx Data from the PC is applied to the PIC through a resistor to limit the current drawn. The voltage excursions are clipped to 0 / 5V by integral diodes with the PIC. The RS232 output, PC Rx Data, is at 0-5V levels rather than the more normal +/- 12V for this signalling protocol. This was done to avoid the complication of adding a level converter chip. No PC Com Port has ever been found which does not work perfectly well with these voltage levels at up to 115200 Baud.

The X4 / X1 link contains an integral pull up resistor and the default state is high, at X1 output frequency. Other PIC lines are unused in the present design and are available for custom user software, two have provision for input resistors to allow connections to RS232 control or handshaking lines. All unused PIC ports are configured as outputs to prevent them floating if left unconnected.

The external trigger input, if used, is connected to the PIC B1 input. A logic level 0/5V signal is required and the frequency / phase information is written into the DDS chip 3-4 us after a low to high transition on this input.

Software Control

Control is via a bidirectional RS232 link with no handshaking. Parameters are 19200 baud, 8 data, No parity, 1 stop bit.

Commands are sent using ASCII / Hex characters, so that a simple terminal programme such as HYPERTRM or PROCOMM can be used to command the frequency source. Set this to 19200 N81, Full duplex, no flow control and all start up / modem commands set to null. Carriage return / linefeed pairs are returned, but where needed, a single [cr] is all that is required for commands.

Alternatively, custom software can be written to drive the COM port with the commands.

In all the following command descriptions , [cr] carriage return is the hex character $0D, decimal 13, and [lf] linefeed is hex $0A, decimal 10.

The first character sent is a Board Address which precedes all commands. This is a single Hex character sent as ASCII 0 – F and potentially allows up to 16 modules to be driven from the same COM port.

The next character is a command which may have hex data following it.

Q
Followed by eight hex digits for the frequency command word terminated by a carriage return

P
Followed by two hex digits for phase word and [cr]

U
Writes the data sent above to the AD9850 DDS chip

T
Writes the data to the AD9850 after the next 0/1 transition on the external trigger input

W
As for U, but also stores the data in the PIC’s non-volatile EEPROM memory for switch on next time.

Y
Followed by one Hex digit, changes the board address and stores in EEPROM. No [cr] needed

K
Followed by 10 hex digits & [cr].

(In practice read as decimal number for user data, typically clockfrequency)

R
Readback current data values – not necessarily those in EEPROM

No echoing is provided of typed characters, the simple UART implemented in the PIC would run into trouble if commands were sent too fast, see below for control limitations.

The 32 bit or 8 hexadecimal character, value N required for frequency settign can be derived from :

N
=
Fout / Fclock * 232
Phase can be set to any one of 32 values in increments of 11.25 degrees. These form the five highest significant bits of the phase word Pxx. The lowest three bits are ignored.

The following codes are sent back from the board to the terminal / software :

At switch on, the startup string : 9850 DDS Controller Addr. * [cr] [lf]
Is returned. (* is the board address) followed by the default data stored in EEPROM in the format:

Q xxxxxxxx Pxx [cr][lf].

This data is loaded into the AD9850 for automatic power on startup. Finally the user K data is sent back in the format Kxxxxxxxxxx[cr][lf]

After the address byte, a single character , Z , is returned to acknowledge correct addressing, followed by [cr][lf]
After the [cr] terminating Q or P hex data , the complete data is echoed back in the form :

Q xxxxxxx Pxx [cr][lf] Note that at this stage the data has not yet been programmed into the synthesizer
Data shifts in from right to left, LSB to MSB, so if more than eight bytes are sent, the last 8 form the frequency data, (or last 2 for phase data, last 10 for K data). If less than the required number, the data is right justified.

For address changes, the complete start up string is returned with the new address appended.

If the X4 / X1 input select is toggled, the relevant state is returned in the form X1[cr][lf] or X4[cr][lf]
Example commands, assuming a conventional ASCII terminal and Board Address 5 :-

Characters sent, or action

Echoed Back

Function

(Switch on)

9850 DDS Controller Addr. 5 [cr] [lf]
(sign on message and

Q xxxxxxxx Pxx [cr][lf]

 stored default data)

K xxxxxxxxxx[cr][lf]

5

Z[cr][lf]

Q54FB1200[cr]

Q 54FB1200 Pxx [cr][lf]

(frequency data setup, but not sent)

5

Z[cr][lf]

P45[cr]

Q 54FB1200 P45 [cr][lf]

(phase data setup but not sent)

5

Z[cr][lf]

U

 Q 54FB1200 P45 [cr][lf]

(programmed into DDS)

5

Z[cr][lf]

Y6

9850 DDS Controller Addr. 6 [cr] [lf]
 (change and save address)

6

Z[cr][lf]

(note that the address has now changed)

W

Q 54FB1200 P45 [cr][lf]

(write current data to EEPROM)

6

Z[cr][lf]

Kxxxxxxxxxx[cr]

K xxxxxxxxxx[cr][lf]

(saves user data into EEPROM)

6
Z[[cr][lf]

(readback all current data)

R

K xxxxxxxxxx[cr][lf]

Q 54FB1200 P45 [cr][lf]

Addr. 6 [cr] [lf]

6 Z[cr][lf]

T

 (no immediate response, software appears to ‘hang’)

(0/1 on Ext Trig input)
T[cr][lf]

(T returned after freq / phase has been updated)

(X4 Input = 0)

X4[cr][lf]

(X4 control pin set)

(X4 Input = 1)

X1[cr][lf]

Command Timing

Due to the simple way the serial interface, or UART, is implememnted in the controller PIC, it is not possible to send a command whilst any characters are being echoed back. This is not a problem when using manual control from a terminal programme, as natural typing delays are more than adequate to allow the completion of all data returned.

Problems can arise however, in software designed to control the board in real time. The following guidelines must be adhered to in writing software to control the module : (timings are worst case and rounded to the nearest millisecond higher)

After switch on wait for the initial startup delay of 300ms, and for the complete 58 character startup message to be returned.

After the address is sent, wait 2ms for the Z to be returned. No Z means the address was wrong or the serial link is not operational.

The Qxxxxxxxx[cr] string can be sent contiguously as no echoing is performed. After the final [cr] wait for the returned data string which is 18 characters and will take 11ms.

5
wait 2ms for Z

Pxx[cr] command, as for Q…

5
…………

U
wait 11ms ………….

5

R
wait 22ms

Ideally the returned string would be parsed and checked for validity, but this is not essential once any driver software has been debugged, provided the minimum wait times above are adhered to. Checking for the Z only, allows command acceptance to be confirmed. Note the locations of spaces in the returned strings. The easiest way to get an exact picture is to test with a conventional terminal programme and see the exact format returned.

After the “T” command, there is a delay of 3 pic clock cycles from the external trigger input to the DDS chip being updated. This corresponds to 3us delay or 2.4us for the 5MHz clock software.

MANUAL UPDATING

Instead of issuing the U command to write data previously sent to the DDS, toggling of the X1/X4 input will also update the chip; either a high or low going transition will work. There is a fixed delay of approximately 17ms after the transition before the command is sent. This was not an intentional part of the software, but is an incidental function of using the Port B change on interrupt to monitor this pin.

EEPROM Data

The 16F84 stores start up data, user data and the board address in its internal EEPROM registers. User data is stored in locations $00 to $04, the frequency word is stored in registers $05 to $08, the phase data in $09 and the board address in $0A. When blowing the firmware into a chip, it may be worth setting these to initial known values, particularly the chip address value.

Five bytes of hex user data can be stored. For easy readability, It is suggested that this consists of the clock frequency in Hz stored in ‘packed BCD’ format so it is read out as hex data, although consisting of decimal digits. The hex D character can be used as a decimal point. For example, a clock of 101.234569 MHz would be represented by the hex data $10 $12 $34 $56 $7D which would be read out as 101234567D or 101234567 Hz. A clock of 4.99999983MHz would be represented by 49 99 99 9D 83

Low Pass Filter Design

The fifth order elliptic given here represents a compromise between attenuation and fast roll off suitable for this application. The component values tabulated below result in a filter with a cut off frequency of 33MHz and an ultimate rejection of 60dB, occuring initially at a value (Fs) of 70MHz. This ensures that for operation of the DDS at up to 33% of a clock frequency of 100 MHz, all DDS generated spurii will be at least -60dBc. A clean, but attenuated output is available at up to 40% of the clock.

By scaling the values given below an equivalent filter can be generated for any desired cut off frequency. For a different filter, perhaps optimised to a particular range of frequencies, consult one of the many books on filter design such as the Handbook of Filter Synthesis, by Zverev. Alternatively, tables of elliptic filter values are given in the ARRL Handbook and these may be scaled for a wide range of useful frequencies. When designing from first principles, note that the characteristic impedance of the filter used here is 200 ohms. This allows the DDS to ‘see’ an impedance of 100 ohms and have the filter correctly terminated at each port. All capacitor values are taken to the nearest E24 values

Standard elliptic filter component values for Fc = 33MHz, (suitable for a clock frequency of 100 MHz) showing 60dB ultimate rejection starting at 70 MHz.

C1
L1
C2 (series)
C3
L2
C4 (series)
C5

27pF
1.1uH
1.8pF
47pF
1uH
4.7pF
33pF

To generate values for a different value of Fc, simple multiply the values in the table by the ratio :

 33MHz / Fc (or by the ratio 100 MHz / Fclock)

For example, a clock frequency of 5MHz and Fc = 1.6 MHz gives filter component values :

C1
L1
C2 (series)
C3
L2
C4 (series)
C5

560pF
22uH
360pF
1nF
20uH
100pF
680pF

A plot of the frequency response for the 100MHz clock filter is given below.

Use with aliased frequency products.

Theoretically, frequencies up to a half of the clock rate can be generated, this limit being set by the rules of aliassing and Nyquist sampling. In practice this frequency cannot be reached due to the need to filter out spurious components and hence the 35 to 40% of Fc normally quoted is the practical upper limit. A very high order filter may well allow operation to 45% of Fc ot higher.

A characteristic of DDS frequency generation is that other products are generated as well as the wanted component. These are normally removed by the filter, but in some cases can be used in preference to the normal one. The main component is the image response, a frequency equal to the clock frequency minus the normal commanded value. Thus for a 100 MHz clock, a programmed frequency of 12 MHz will also give an output at 100-12 = 88 MHz. Tuning will of course be in the wrong direction as Fout = Fclock – Fset. Bandpass filtering is obviously needed here as the lower ‘normal’ frequency has to be removed as well as the clock and other higher components and use in this way will normally be restricted to narrow band operation. Typically for a 100 MHz clock, frequencies from around 60 to 90 MHz should be realisable. There are another pair of frequencies available above the clock, given by Fout = Fclock + Fset and Fout = 2.Fclock – Fset and so on, giving access to 110 – 140 and 160 – 180 MHz, again for a 100 MHz clock. These higher frequency terms will progressively reduce in amplitude due to the SIN(X) / X envelope for sampled waveforms and the frequency response of the D/A converter within the DDS chip and have not been tested.

Frequency response of the 5th order elliptic filter with Fc = 35MHz, Fs = 70MHz and Amin = 60dB

(Frequency scale logarithmic 20MHz to 250MHz)

[image: image1.png]Mi ~ _ analpse ddsellip - FROZEN

Configuration Libraries
File: |Begin: End: Steps: X-Ecale:
Gain <dB?» DDEELLIP Phase (%)

G

-0.0 P

—10 . 000 Amplitude
—20.000
=30 000
=40 000
=50 _000

—60 _000

=70 _000

Tr [T T ITrrrrer[rrrrrrrrr[rrrrrrrrrrierrri
| | | |

3
3

