
Controller for AD9850 DDS Modules Andy Talbot G4JNT 2012-12-06

Latest Comments. Construction notes and feedback from builders at the end

The low cost (£3) Chinese made modules available via Ebay contain an AD9850 DDS chip, 125MHz
clock oscillator but no controller for setting the chip via its three wire SPI interface. The
modules run from a 5V supply and consume about 120mA.

This unit provides an easy means to set the frequency to any value up to 42MHz by use of a
rotary encoder, two pushbuttons and LCD. 16 non-volatile memories are provided allowing any
of 16 prestored frequencies to be called up. Each frequency can be adjusted with the rotary
encoder and stored back into that memory position if needed.

The circuit diagram is shown below... Communication with the DDS module is by the three wire
serial interface, going to the Data, FU-UD and WClk pins. 1 A fourth line also controls chip
Reset. This latter is not essential, but has been included as it may be useful in the future to
have a reset capability. A 5V regulator is provided on the controller. This is only rated at
100mA so shouldn’t really be used to power the DDS chip. It does work, but you have been
warned!

The software in the PIC maintains a 32 bit frequency word that is incremented or decremented
from the rotary encoder. This word represents the desired frequency in units of 0.01Hz, and is
independent of the DDS clock. The value being converted to BCD and displayed on the LCD
(inserting a decimal point at the appropriate place). The 32 bit word in units of 0.01Hz means
the highest frequency that can be stored is about 42.94MHz which is just about the maximum
possible this clock frequency.

 To generate the 32 bit code to send to the DDS chip, this 32 bit value is multiplied by a constant
equal to Step size / Fclock * 264. Here, is it 0.01Hz / 125MHz * 264 = 1475739526, or in hex
notation 0x57F5FF86. This is stored using 6 bytes to allow for lower clock frequencies and / or
larger step size The highest 16 bits, or four bytes, of the result form the value sent to the DDS.

The tuning step,
corresponding to each pulse
from the rotary encoder, can
be cycled though each
decimal digit from 100kHz
steps down to 0.01Hz by
pressing the S pushbutton
repeatedly. The digit being
changed is shown by the
caret on the second line of
the display. Holding the S
button down for 2 seconds
stores the displayed
frequency in the current

1 . This module is also used for control of Fractional-N synthesizers with appropriate PIC firmware.
Ignore the part on the diagram referring to LMX2xxx connections.

memory.

The 16 memories can be cycled through with the M button. At turn on, the first memory
location, MemA is always loaded. Cycle through each location as desired, using the rotary
control to move from this value. Holding S down for two seconds stores the new value in that
location.

A minimum step of 0.01 Hz
may seem a bit pointless
when the fundamental DDS
resolution using the supplied
clock is 125MHz / 232 =
0.029Hz, but it has been
included for when the
module is used with a lower
clock frequency. For
example, a 10MHz clock
allows 0.0023Hz resolution.

PCB

A PCB layout for SOIC packaged 16F628A PIC
devices is shown below. The 14 pin header
plugs directly onto the LCD modules available
from [1], with all other connections made via
pads or headers. Construction should be self
explanatory. The LED serves no useful
purpose in this designs and can be left out. It
is a hangover from an earlier project that
used this PCB. (The odd pin connections for
the serial interface to the DDS module are
also a legacy of backwards compatibility)

PIC Firmware

Source code for programming into the PIC is contained in the file 9850_rot.asm which includes
sufficient comments and notes if you need to modify it to change clock frequency, step size or

whatever. The 6 byte word forming the tuning constant, that needs to be changed for other
clock frequencies, is stored in the six lowest EEPROM locations.

 Compiled code for programming direct into a 16F628A for use with the 125MHz clock oscillator
can be found in 9850_rot.hex (The code is just about small enough to fit into a 16F627A
device)

The file SPI_ROT.pdf is a 1:1 mirror imaged monochrome plot of the PCB for direct laser
printing to acetate or iron-on transfer for homebrew PCBs.

All files can be found at www.g4jnt.com/AD9850-Controller.zip

LCD Modules and PCB availability

Low cost suitable LCD modules at £5 (TBC) each can be obtained from Kevin G3AAF. Contact
him at Kevin@avery03.fsnet.co.uk .

The module is so simple that commercially made PCBs are an unnecessary expense. However, I
may be able to supply home produced ones. Contact ac.talbot@btinternet.com if you are
interested.

Notes, Feedback, Comments

PIC Type

Although a 16F627 PIC is specified in the assembly source code, a 16F627A, 16F628 or 16F628A
can be used without change. Most programmers even won’t blink an eye at the wrongly
specified device. If your particular programming software does whinge, just change the
appropriate lines of code and reassemble.

Rotary Encoder

The circuit diagram implies an optical or otherwise powered encoder. A simple mechanical
switch type works equally well, ignoring any connection to +5V. There is no need for pull-up
resistors, the PIC already has them enabled. However, to avoid contact bounce, two capacitors
across the switch contacts will probably be needed. Use a value in the region 10 – 100nF

Two-Line LCD

Many have asked if a 2-Line LCD module can be used insteadof the four line one shown. Those
who have tried it reported it worked. The frequency and memory data is still shown. Only the
hex register contents are missing.

Startup MemA Issues (modification 2013/05/27)

Several users reported incorrect recall of the Memory A value at switch on, resulting in a random
frequency being loaded. This appeared to be particularly troublesome when mechanical
encoders were used with debounce capacitors.

The problem appears to be caused by the INTF interrupt being enabled too soon, and corrupting
the values loaded from memory. As a quick fix, both INTF and the global interrupt have been
moved to the end of the Startup routine which appears to have 99.8% cured the problem. Now,
there may be a spurious but minor change of just one digit under the cursor at startup.

