6dB Better than CW

Weak Signal Modes on the Microwave Bands

Andy Talbot G4JNT/G8IMR

Traditional CW

Is the weak signal mode used when all else (especially SSB !) fails Limited by **Noise** – Proportional the bandwidth Operators ability to decode it Often need to repeat messages Talkback / handshaking Alphabet prone to errors if message is broken J (--- ---) = E E M (- - -- --)

A few Values

Ear / Brain combination is surprisingly good at detecting tones buried in noise SSB voice needs ~ 3kHz for full readability We detect it as if the bandwidth were only a few tens of Hz And especially tones at the right frequency, in something like 20 – 100Hz noise bandwidth This often gives a false impression how good a signal really is.

Some Audio Generated by Maths!

Sampling Rate S/N Ref BW		8000 2500	Hz Hz	-5dB	16 Bit sampling, noise RMS = -10 dB = 32767 / SQRT(10) = 10361				
	Audio BW	100	Hz	-19dB	99% proba	ability of r			
							Signal	/Noise	
	Source File	Amplitude dB wrt FSD		Dest File		Noise dB FSD	2.5kHz Norm.	100Hz Audio	
	CWMSGM20	-20	\dsp\weak	<u>kcw01.wav</u>	48	-10	-5	9	
	CWMSGM25	-25	\dsp\weak	kcw02.wav	- 🕡	-10	-10	4	
	CWMSGM30	-30	\dsp\weak	<u>kcw03.wav</u>		-10	-15	-1	
	CWMSGM35	-35	\dsp\weak	kcw04.wav		-10	-20	-6 CW Limit ?	
	CWMSGM40	-40	\dsp\weak	kcw05.wav		-10	-25	-11	

The Limit for CW

At best, around 10dB S/N in 30Hz for easy *copy* CW. No repeats Several dB lower for detecting Assume 18WPM at this level. A Word has 5 chars, 4.5 bits / char (plain) text) = 6 or 7 Bits /second equiv data rate Repeat the message, gives ~ 2 -3 Bits/s This is manual Forward Error Correction

Compare simple data modes

RTTY 30 Bits/s (for 50 baud)
 Needs >15dB S/N in 100Hz (around the two tones)
 Very inefficient
 PSK31 >10dB S/N in 31Hz

About the same as CW with a good operator

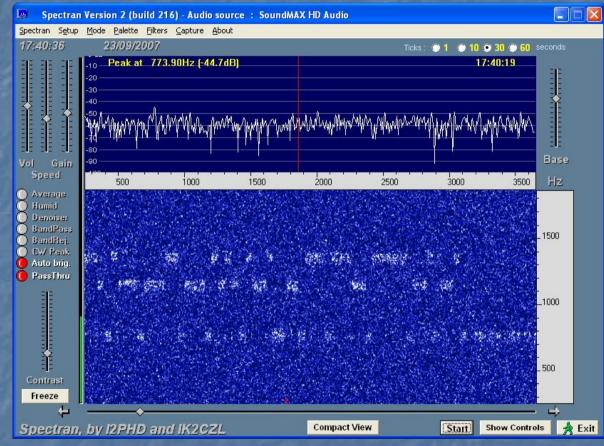
 Both of these are error prone, so repeats are needed

Reduces overall data rate

And what about Microwave Bands?

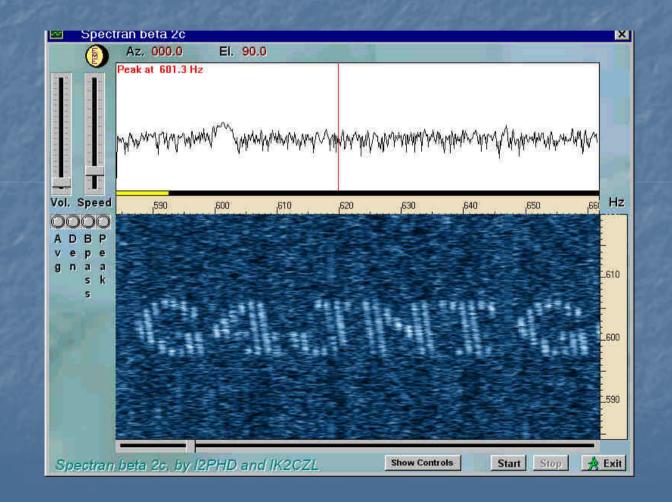
Rain Scatter
 Spreads the signal over 100 – 300Hz
 CW survives this quite well, (and RS is often strong)
 DFCW with spectral display works reasonably well
 Scattering / breakup / troposcatter / multipath
 Kills CW

Kills most other data modes

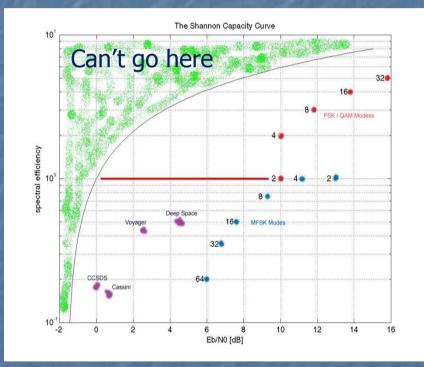

Can we go Narrower

Yes - Lower BW , less noise, increases S/N
But the message takes proportionately longer to send
Spreading could be a problem
Need machine assistance

QRSS, Visual CW, DFCW, Hell


'About the same signalling efficiency as CW'

Visual CW / DFCW / DFCWi


Advantages for very slow data in narrow band – about same as aural CW when scaled for speed/BWidth.

SMT Hell

Can We Do Better

The Shannon Curve Was derived from basic Physics / Maths / Info theory and is NOT an experimental result. It is a TARGET.

 Horizontal – Normalised Signal/Noise, energy / bit

 Move left, Lower Tx power, or increase noise

 Vertical – Spectral Efficiency, Bits/s/Hz.

 Move up, increase bandwidth for same capacity

 Red – 2 ... 32 PSK/QAM
 Blue – 2 ... 64 MFSK
 Purple - Heavily coded deep space
 Red Line – "10dB from Shannon"

http://marconig.wordpress.com/2007/07/03/the-shannon-capacity-curve/

Bandwidth Expansion

Commercially / military use spread spectrum

WLAN, Bluetooth, Wi-Fi.

 All improve signalling efficiency by spreading the signal over a wide bandwidth to counter interference / multipath

Not too easy on the Am. Bands as we nearly always want to keep within the 3kHz SSB bandwidth

Another Way

Heavy Error Correction Often not thought-of as a bandwidth spreading • We already see it in normal operation – Repeat the information many times Slowing the data rate and keeping the same modulation format is equivalent to widening the bandwidth It's the ratio of Data Rate / Bandwidth that matters

Source Coding

First Get rid of redundant information (WSJT Style) Compress callsigns using their known structure Char-Char-Number-Letter-Letter Letter = A-Z or [space]. Char = Letter or 0-9 (but note the 2nd Char cannot be a [space]) Compresses to 37*36*10*27*27*27 = 262Meg • Which can be represented by 28 Bits (RTTY needs at least 35 bits, could be more depending on letter/figure shift) Locator (4 digit) 18*18*10*10 = 32400 (15 Bits) 6 Digit Loc 25 bits

Further Source Coding

Assume 4 Million Radio Ams in the world (we wish!) Use a codebook to store the callsign of everyone, then just transmit the reference number Only needs 22 bits This is contentious lets not go there ! Reports and acknowledgements need only a few bits in reality But this also sparks controversey With the natural redundancy removed, any random data message begins to look valid Acknowledged 'problem' with source coding

An Aside....

Morse is a classic example of source coding
Most common letters use less data bits than less popular ones
Same problem of one symbol being corrupted to another
eg. T = E E
Bleeps from continuity tester can spell messages

Modulation

- On-Off, or Amplitude Shift Keying is not good.
 It must waste 3dB
 PSK is theoretically the best (multiplication by 1 or -1)
 - Maintains high duty/cycle
 - Coherency needs frequency / phase lock
 - Which can be destroyed by propagation anomalies
 - Non-linear processing for recovery throws away many of the advantages of coherent reception
 - Unless bandwidth is unimportant, needs linear transmitters
- Which leaves good old fashioned, well established FSK

Multi FSK

Use several Tones

- Extend these over more than the anticipated spread
- 10's of Hz for V/UHF.
- 100's of Hz for microwave
 - All well within the 3kHz SSB bandwidth.
- 4 tones give 2 bits per symbol

F0 = '00', F1 = '01', F2 = '11', F3 = '10' <u>WSPR / JT4</u>

- 64 tones 6 bits per symbol
 - F0 = `000000', F7 = `000111', F26 = `011010', F63 = `111111' <u>JT65</u>
 - We've increased our data rate at the expense of decoding complexity – that's no problem these days

Error Correction

Now make good use of our increased capacity / data rate

- Could just repeat the message several times and compare each, looking for errors in each bit.
 - Three repeats allows error correction
 - Two repeats allows detection may be enough if talkback allows a repeat request
- Interleave the repeats to counter burst errors
- But we can do a lot better
 - and its very mathematical

Error Correction Techniques

Hamming Distance

- Add enough extra parity bits so the new alphabet has a certain number of bits different between each block. Then compare each received one and look for the most probable.
 - Example is 4 bits with 3 more parity
 - Allows 1 error in a total of 7 to be corrected
 - 2 errors can be detected
 - Simple schemes are decoded using lookup tables

Block coding

- More efficient longer-word schemes are in widespread use
- Reed-Solomon, BCH
 - But the maths processing is NOT NICE
 - Galois Fields, Dividing Polynomials

Error Correction Techniques continued

Convolutional Coding

- Continuously spread each source over several bits of the output. Adding more for correction – eg x2 or x3
 - Continuously look for what was most likely to have been sent in order to generate what has actually been received.
- Soft decision decoding looks at probability a received symbol is good, bad or indifferent
- The Viterbi decoding algorithm
 - Searches back though received symbols in a trellis, looking for the most likely data that could have generated it
- Processor intensive, adds a delay.

Another Aside A few state-of-the art codes

Taken from

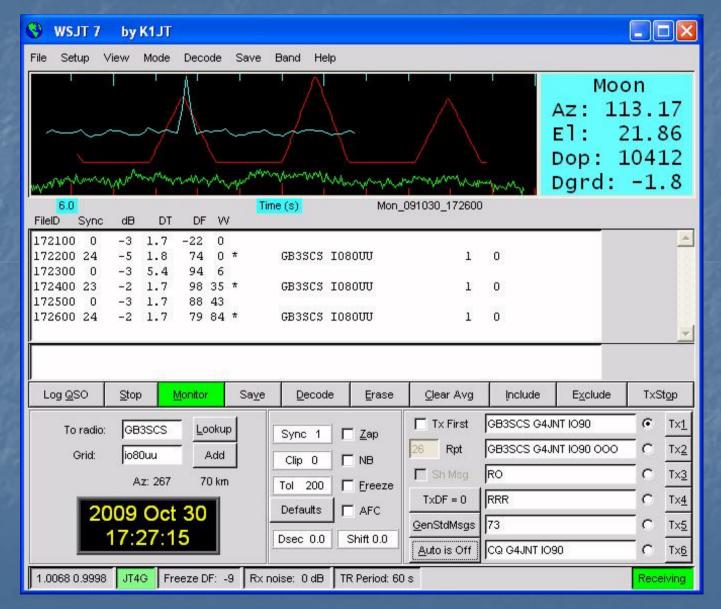
http://marconig.wordpress.com/2007/07/03/the-shannon-capacity-curve

- These are for BPSK with the coding used with several deep space (interplanetary) spacecraft:
- r=1/2 k=7 convolutional: Eb/No 4.5 dB, eff 0.5 bps/Hz
- Voyager (RS+r=1/2,k=7): Eb/No 2.4 dB, eff 0.437 bps/Hz
- Cassini (RS+r=1/6 k=15): Eb/No 0.6 dB, eff 0.146 bps/Hz
- CCSDS r=1/6 turbo large block: Eb/No 0.0 dB 0.167 bps/Hz
- Not much scope for further improvement

Timing and Frequency Errors

- Need knowledge of frequency / tuning error and timing
 - Use UTC based protocol to limit search requirements
 - Identify Start of message timing
 - To be able to identify the right symbols
 - Can't afford to spend a lot of time searching
 - Typical few seconds for PC clock errors, bit more for EME delays
 - Frequency get within a tone bandwidth for MFSK schemes.
 - Send synchronisation Sequence
 - Unique pattern to search for that won't appear anywhere in the message. Can give frequency and time.

WSJT Examples


JT65

72 source Bits - 2 compressed callsigns + one 4-digit Locator OR 13 chars of plain text.
Block coding (Reed Solomon) expanded to 126 symbols of 64 tones (6 bits / symbol) ,and one more for sync , Pseudo Random interspersed.
Effectively expands a 72 bit message to an effective 441 bits
Big Sync overhead - 50% of the message time
Three tone spacings, 2.7, 5.4 and 10.8Hz

JT4 a-g and WSPR

Both similar *coding* schemes Four tones carrying two bits per symbol, One bit is sync sent as a pseudo-random code The other is a data bit JT4 same message as JT65, 72 bits expanded to 207 in a convolutional encoder Sent in 48 seconds at 4.375 symbols/s Tone spacing user selected from 4.4 to 315Hz WSPR Different Message, new data structure **50** bits expanded to 162 in a convolutional encoder Sent in 110 seconds at 1.46 symbols / second Tone spacing 1.46Hz

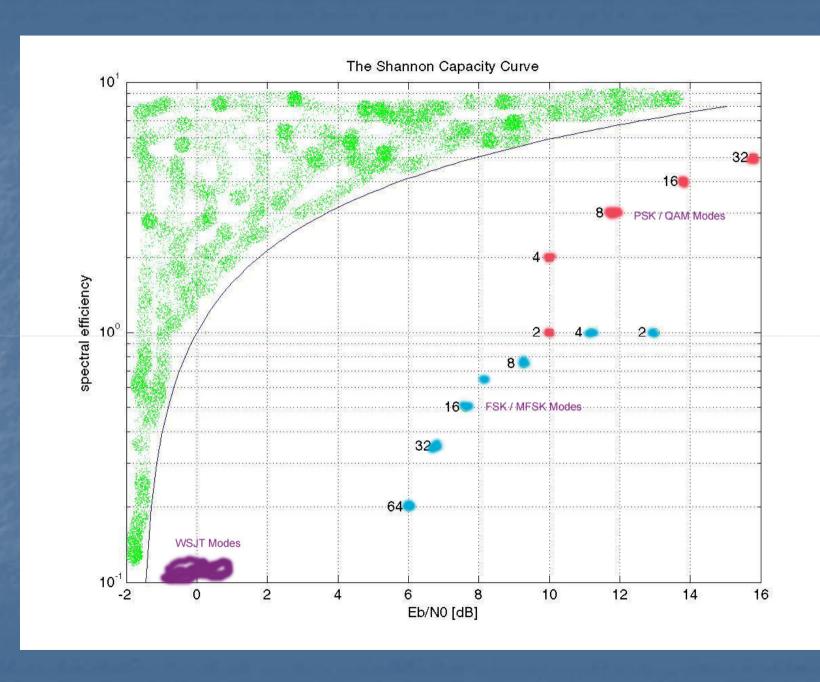
WSJT User Screen

Using WSJT

Setup Box Callsign, Locator, Com Port for Tx control Make Sure sampling rate calibration is OK Only done once per PC – unless using .WAV files). Look at Self Check value. Enter into Setup, Options Set The right Mode (easily forgotton!) Set PC Clock Dsec Box for fine tuning – aim for less than a second or two error from UTC Adjust Audio Levels

Need Rx or Monitor to be running

Run WSJT.....



Load in .WAV files from GB3SCX and GB3SCS Set Rate in to 1.0068 (Saved on a different machine)

Replay .WAV files and use mic to loop round Set Options Rate-in back to to 0.9797 - check value. (Although they were recorded on another machine at 11100Hz, check exact value!) Use Monitor mode and start VLC replay 2 seconds early

Where to hear WSJT Signals

Off the Moon , JT65A, B, C **GB3SCX 10368.905MHz** JT4G GB3SCS 2320.905MHz JT4G Tune so USB carrier is 800Hz below **GB3VHF** 144.43MHz JT65B Tune 1500Hz low, USB carrier 144.4285MHz **GB3RAL** 40.05/50.05/60.05/70.05 JT65B Tune USB carrier Xx.0485MHz HF Bands JT65A, JT4A+, WSPR

